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Travel time reliability has emerged as an indicator of roadway perfor-
mance. Estimation of travel time distribution is an important starting  
input for measuring travel time reliability. This study used kernel 
density estimation to estimate travel time distribution. The Hasofer–
Lind–Rackwitz–Fiessler algorithm, widely used in the field of reliability 
engineering, was used in this work to compute the reliability index of a 
system based on its previous performance. The computing procedure 
for travel time reliability of corridors on a freeway was introduced, then 
network travel time reliability was developed. Given probability distri-
butions estimated by the kernel density estimation technique and an 
anticipated travel time from travelers, the two equations of corridor 
and network travel time reliability can be used to address the question,  
“How reliable is my perceived travel time?” The definition of travel time 
reliability was in the sense of on-time performance, and this study was 
conducted from the perspective of travelers. The major advantages of 
the proposed method are as follows: (a) it demonstrates an alternative 
way to estimate travel time distributions when the choice of probability 
distribution family is still uncertain and (b) it shows its flexibility for 
application to levels of roadways (e.g., individual roadway segment or 
network). A user-defined anticipated travel time can be input, and 
travelers can use the computed travel time reliability information to 
plan their trips so that they can better manage trip time, reduce costs, 
and avoid frustration.

Travel time is one of the important freeway and arterial performance 
measures. In the past decade, many methods have been developed 
to estimate travel times (1, 2). Since travel time estimation methods 
are still maturing, however, travel time predictions might not accu-
rately represent, or align with, road users’ experiences on freeways. 
A 10-min drive from Point A to Point B, for example, might result 
in different levels of satisfaction, depending on time of day or spe-
cific expectations of road users. Recently, travel time reliability has 
emerged as another indicator of roadway performance. A Google 
Scholar search revealed that the number of research projects and 
papers on travel time reliability has been growing, from 2,430 in 2001 
to 5,280 in 2012. Chen et al. stated that along with conventional 

freeway performance measures, such as level of service, vehicle 
miles traveled, and total delay, travel time reliability can perform as 
a major indicator of service quality for travelers and can be used to 
quantify travel cost for individual trips (3). Travel costs increase as 
either travel time increases or travel time reliability decreases. Van 
Lint et al. stated that travelers are inclined to choose more reliable 
routes instead of (on average) faster ones (4). Therefore, travel time 
reliability could be one of the factors that greatly affect transportation 
mode choice and route choice for individual travelers.

In addition to being a performance measure of traffic operations, 
travel time reliability is being used by regional transportation planning 
organizations to improve planning and operations at a macroscopic 
level (5). Organizations have begun to use travel time reliability as 
a primary measure of roadway congestion, instead of conventional 
measures such as volume-to-capacity ratio. Use of travel time reli-
ability may be a more suitable approach for measuring changes of 
a transportation system. Although travel time reliability has been 
widely used by transportation planning and operations organiza-
tions, the definitions of travel time reliability vary depending on 
the purpose of the applications. FHWA officially defines travel time 
reliability as “the consistency or dependability in travel times, as 
measured from day-to-day and/or across different times of the day” 
(6). From the traveler’s standpoint, this term could be interpreted as, 
how reliable is the anticipated travel time for my planned trip? or, in 
nine out of 10 trips, could I arrive at my planned destination within 
my anticipated time (90% reliability)? This definition is built on the  
concept of on-time performance. van Lint and van Zuylen stated 
that “travel time reliability relates to properties of the (day-to-day)  
travel time distribution as a function of time of day (TOD), day 
of the week (DOW), and month of year (MOY), as well as external 
factors such as weather, incidents, and road work” (7). This state-
ment reveals that travel time reliability contains two components: 
selection of time periods and external factors. The capacity (supply) of 
transportation infrastructure can be temporarily reduced by external 
factors, such as weather, vehicle crashes, work zones, and geometric 
design; traffic demand can be affected by other external factors, 
such as special events. These external factors could affect travel time 
reliability (8, 9).

A considerable amount of research has focused on quantifying 
travel time reliability from various perspectives. Many current mea-
sures were based on mean or percentiles of travel time, such as 
90th, 95th, or another percentile travel time, the buffer index, buffer  
time, the planning time index, the misery index, and the Florida 
reliability method. These measures were well defined and rephrased 
in published reports (6, 10, 11) and papers (4, 12–15). Practitioners 
preferred these travel time reliability measures because they were 
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estimated either in minutes (the total travel time or extra time needed 
to reach destinations) or in percentages (level of on-time travel 
performance). From the reliability engineering point of view, Emam 
and Al-Deek used real-life traffic data to test four travel time dis
tributions and found the lognormal distribution fit the data best (13). 
On the basis of the lognormal distribution, they proposed a new 
method for computing on-time performance for freeway corridors. 
However, Emam and Al-Deek made an assumption that the relation-
ship between consecutive links of freeways was independent (13). 
The corridor travel time reliability was equal to the products of the 
reliability of each link. The drawback of their method is that the results 
of corridor travel time reliability may be close to zero as the number 
of links increases (13).

Unlike the measures generated from the practitioner perspective, 
many measures have been derived from statistics of the travel time 
distribution, such as standard deviation and coefficient of variation 
of travel times. van Lint and van Zuylen (7) and van Lint et al. (4) 
proposed skewness (λskew) and width (λvar) of the estimated travel 
time distribution to represent the travel time reliability, and they 
visualized the proposed measures with a travel time reliability map. 
Rakha et al. proposed five methods for estimating travel time variance 
as measures of travel time reliability on the premise that the travel 
time distribution followed the lognormal distribution (16).

The distribution of travel time is believed to be an important starting 
input for measuring travel time reliability. The shape of travel time 
distribution relies heavily on traffic flow conditions. Van Lint and 
van Zuylen (7) and van Lint et al. (4) described travel time distribu-
tions according to four stages of traffic flow: free-flow condition, 
congestion onset, congestion, and congestion dissolve. Guo et al. 
used those results to restate the strong connection between travel time 
distributions and traffic flow conditions (17, 18). This connection was 
also reconfirmed by Pu, who investigated the analytic relationships 
between different travel time reliability measures (19).

Most previous travel time reliability research focused on the prop-
erties of the travel time distribution before developing measures of 
travel time reliability. Several studies applied simulation methods to 
construct the travel time distribution (17, 20). Most of the relevant 
studies fit statistical distribution models by using real-life traffic data 
(12, 13, 21). One travel time reliability measure, travel time window, 
was derived with a normal distribution (10). Skewed statistical dis-
tributions are most commonly found in previous research. Polus 
claimed that the gamma distribution could best be fit by the travel 
time data collected from arterial roads (21). Al-Deek and Emam con-
ducted travel time reliability research in a transportation network 
environment and found the Weibull distribution could be represen-
tative of travel time distribution, rather than the exponential distri-
bution (12). Many studies concluded that the lognormal distribution  
outperformed other skewed distributions in various traffic flow con-
ditions (9, 13, 16). The lognormal distribution was therefore adopted 
in relevant research to investigate the analytic relationship of travel 
time reliability measures (19) or to develop a new measure (14). 
These researchers used a single model to represent the travel time 
distribution in a given period. Guo et al. stated that a mixture model 
outperformed single models, especially in a traffic congestion condi-
tion (17). They first proposed a two-state model based on the normal 
distribution and calibrated the required parameters of the two-state 
model (18). Later, Guo et al. replaced the normal distribution in the 
two-state model with a skewed distribution, namely, the lognormal 
distribution, and concluded that the skewed mixture model performed 
the best during peak hours (22).

The probability distributions referred to are parametric prob-
ability distributions, meaning that parameters are required to deter-
mine the locations and shapes for the predefined distribution types. 
In most cases, however, the traffic flow condition in a given period 
is unknown, which leads to difficulty in identifying an appropri-
ate parametric probability distribution. Moreover, the parametric 
probability distributions may not be sufficiently adaptable when  
researchers are building travel time distributions. Nonparametric 
probability distributions may instead be preferred as appropriate 
statistical models for constructing travel time distributions because 
fewer assumptions are required to build them. The resulting non-
parametric distributions can then be used for general cases in which 
significant flexibility is important.

This paper uses the kernel density estimation (KDE) technique to 
construct travel time distributions with greater flexibility, increased 
fidelity, and fewer assumptions. Moreover, since previous work 
focused on link or corridor travel time reliability, a framework 
based on the Hasofer–Lind–Rackwitz–Fiessler (HL-RF) algorithm 
that considers multilevel (e.g., corridor or network) cases for report-
ing travel time reliability is proposed in the paper. The methods for 
estimating travel time distribution and reliability with KDE and the 
HL-RF algorithm used in this study can be considered a general 
approach to constructing the travel time distributions and reliability. 
The impacts of external factors are not specifically discussed in 
this study.

The outline of the paper is as follows. The modeling framework 
is introduced first. This framework consists of three parts: travel 
time estimation, travel time distribution estimation, and travel time 
reliability index calculation. A description of the data set used in 
this study is followed by the implementation and applications of the 
proposed method. The paper ends with a concluding discussion and 
remarks.

Modeling Framework

The proposed travel time reliability modeling framework consists 
of three parts: travel time calculation, link travel time distribution 
estimation, and corridor–network travel time reliability calculation. 
Travel time distribution is determined by the results of travel time 
estimation on a specific road segment at a given time period.

Travel Time Estimation

Four basic approaches are recommended by FHWA for collecting 
travel times for measuring travel time reliability (6), including the 
method of estimating from intelligent transportation systems (ITS) 
sensor data. The instantaneous model is used to estimate travel times 
because it is easy to implement and is widely used in practice. Two 
consecutive ITS sensors directionally act as upstream and down-
stream end points of a link. For a specific link, designated link i, 
the values of vehicle speed, collected at time t from upstream and 
downstream ITS sensors, are denoted v(ia, t) and v(ib, t), respectively. 
The length of link i (li) can be measured on the basis of mileage 
information, and the travel time of this link then can be calculated 
with Equation 1:
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where

	 li	=	 length of link i,
	 v(ia, t)	=	measured speed upstream of link i (ia) at time t,
	 v(ib, t)	=	measured speed downstream of link i (ib) at time t, and
	TT(i, t)	=	estimated travel time of link i at time t.

To reduce the impact of short-duration travel time fluctuations, 
travel time is aggregated at 5-min intervals. In addition, day of week 
(DOW) and time of day (TOD) are included in the function of travel 
time reliability. The matrix in Equation 2 shows the estimated travel 
times for a link, given specific DOW and TOD:
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where link travel time (i) |DOW,TOD is the estimated travel time of link 
i at specified DOW and TOD and TTn,m is the estimated travel time 
at mth 5-min periods and in nth days. In this study, m equals 12, 
and n means the number of specific weekdays. Then the number of 
samples for estimating travel time distribution equals m p n.

Because a corridor is composed of several consecutive links, the 
corridor travel time can be computed as the summation of individual 
link travel times.

Estimation of Travel Time Distribution

Travel time distribution is considered the starting point of a travel 
time reliability calculation. Density estimation and smoothing 
techniques can be used to generate highly adaptable nonparametric 
probability density functions (PDF). KDE is a well-known approach 
for estimating the PDF. Rather than fitting predefined parametric 
analytical statistical distributions, such as Weibull, exponential, 
lognormal, or Normal distributions, this study uses KDE, a non-
parametric statistical model, to estimate the PDF. Equation 3 rep
resents the corresponding kernel estimator. Instead of relying on a 
few parameters to characterize the entire probability distribution,  
KDE parameterizes only a localized portion (kernel) of the distribu-
tion; it then aggregates the kernels to characterize the population 
distribution. This approach allows for widely varying manifesta-
tions of the distributions to better represent the diversity and fidelity 
of data.
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where

	 n	=	number of samples in the data set,
	 h	=	smoothing parameter (kernel bandwidth),
	K(∗)	=	user-defined kernel function, and
	fh(x)	=	KDE.

The kernel function, which satisfies the two requirements in 
Equations 4 and 5, is a nonnegative, real-valued integral function. 
This study applies the most commonly used approach, employing a 
Gaussian kernel (versus triangular, etc.) as the seed function to esti-
mate the PDF from the data point travel times. Equation 6 provides 

the definition of the Gaussian kernel function. Because of aggrega-
tion of many localized kernels, the use of a Gaussian kernel does 
not imply generation of a Gaussian (normal) distribution, or even 
a symmetric one.
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The form of the kernel function is not the sole component of the 
estimator’s performance. Instead, bandwidth or the smoothing factor 
(h) is the primary parameter of the kernel estimator. The smoothing 
parameter controls the degree of distribution fidelity retained from 
the finite number of data points. Larger smoothing factors can be 
advantageous for filling in portions of the distribution that would 
otherwise disappear as the number of data points approaches a 
population. A small change in h can therefore result in a dramatic 
variation of the estimator. Several methods based either on minimizing  
asymptotic mean integrated squared error or on cross validation, have 
been used to determine the smoothing factor. Equation 7 shows one 
optimal solution (23):
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where δ is the standard deviation of the data points of travel times.
Since the data points for travel times on a selected link or a cor-

ridor can be computed with Equation 2, the travel time distribution 
can be readily determined with the KDE technique. The time frame 
in measuring travel time reliability is based on DOW and TOD. 
Although not included in this study, use of Equation 2 with KDE 
allows for identification of preferred smoothing parameters by com-
parison of distributions generated with larger and smaller numbers 
of data points.

Reliability Index Calculation

The HL-RF algorithm is widely used in the field of reliability 
engineering (24). It computes the performance reliability index of 
a system described by a function of statistically independent ran-
dom variables. The system performance is expressed by a limit-state 
function, g(X), where X = (X1, X2, . . . , Xn), and each Xi represents a 
normally distributed, independent random variable. A set of real-
ized values for X, denoted as x = (x1, x2, . . . , xn), is used to examine 
whether the value of the limit-state function is positive or negative. 
The three resulting states are classified as follows: (a) when g(x) > 0,  
it is defined as a safe state; (b) when g(x) < 0, it is defined as a failure 
state; and (c) when g(x) = 0, it is defined as the limit state, which 
is graphically visualized as a failure surface in X space. The failure 
surface can be built by solving for g(X) = 0. The reliability index, β,  
of the system represents the minimal distance from the origin, in 
normalized space, to a point on the failure surface. Since the limit-
state function g(X1, X2, . . . , Xn) may be nonlinear, an iterative pro-
cedure is designed for finding convergence in β, and any standard 
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optimization algorithm (e.g., nonlinear programming) can be used to  
obtain its value by minimizing β subject to the constraint g(X) = 0. 
The reliability index β can be interpreted as the number of standard 
deviations from the mean performance value to the closest point 
on the failure surface (when the random variables are normalized to 
have zero mean and unit standard deviation). It is also the variate  
of the standard normal cumulative distribution function (CDF) 
at the most probable point of failure for g(X), which implies that 
the reliability is Φ(β), where Φ is the CDF of the standard normal 
distribution.

One complication of the preceding is that each Xi in the limit-state 
function is intended to be normally distributed. Many variables in 
reality, however, do not follow a normal distribution (including any 
parameter that is strictly positive). A transformation of nonnormal 
variables to equivalent normal variables is therefore added as the 
distinguishing component in the iterative procedure of HL-RF versus 
the HL method. The following section describes the application of 
the HL-RF algorithm to assessment of travel time reliability.

HL-RF Algorithm

Assume a system consists of n components, say, X1, X2, . . . , Xn, 
each component being associated with a failure distribution. Each Xi 
should follow a normal distribution and be independent of the other. 
Assuming the system performance can be expressed as g(X), where 
X = (X1, X2, . . . , Xn), the resulting mean value and standard deviation 
of Xi are denoted as µXi

 and σXi
.

For computing a converged reliability index, β, the iterative pro-
cedure starts with a design point X* = [X 1*, X 2*, . . . , X n*], where 
X i*are usually initially assigned as the mean values, µXi

. The trans-
formation from nonnormal to normal variables is executed at each 
iterative design point. For example, consider µXi

 and σXi
 as the mean 

and standard deviation of a nonnormal variable Xi. At iterative points, 
nonnormal variable Xi is transformed into an equivalent normal 
variable, denoted Xi

N, having mean and standard deviation denoted as 
µN

Xi
 and σN

Xi
, respectively. Reduced variables (Z* = [Z 1*, Z 2*, . . . , Zn*] 

then can be projected from normal variables (X* = [X1*, X2*, . . . , Xn*] 
with Equation 8. The reliability index, β, is computed at each iteration 
with Equation 9.

(8)p
p

Z
X

i
i X

N

X
N

i

i

=
− µ

σ

*
(9)

G Z

G G

T

T
β =

where

�
and evaluated at

design point

1

2

G

G

G

G

G
g

Z

g

X

X

Z

g

X

n

i
i i

i

i i
xi[ ]

[ ]

[ ]

[ ]
=





















= −
∂
∂

= −
∂
∂

∂
∂

= −
∂
∂

σ

The vector G in Equation 9 represents the gradient or sensitiv-
ity of the performance function, g(X), with respect to each random 
variable at the current (iterative) design point and T is the transpose  

of the vector or matrix. Once each reliability index β is calculated, 
its convergence determines the termination state of the iteration. If β 
converges to within a user-defined threshold, the iteration ends; oth-
erwise a new design point is computed on the basis of new reduced 
variables for the next iteration. Equation 10 shows the procedure for 
obtaining new reduced variables. Equation 11 is then used to derive 
a new design point from the new reduced variables.

* (10)Z = βα

where

	 β	=	computed reliability index in the current iteration,
	 α	=	G/√(GTG), and
	Z*	=	new reduced variables.

(11)X Zi i X Xi i
= σ + µ

The remaining task is to transform nonnormal random variables 
into equivalent normal random variables at the new design point.

Transformation of Nonnormal Random Variables 
to Equivalent Normal Random Variables

Rackwitz and Fiessler claimed two requirements for the transforma-
tion: (a) the CDF of the original and equivalent normal variables 
should be matched at the required point, and (b) the PDF of both 
variables should also be matched (24). Equation 12 establishes the 
first requirement:
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where

	 x*	=	value of X* at the required point,
	FX(p)	=	CDF of the nonnormal distribution,
	 µX

N	=	mean value of the equivalent normal distribution,
	 σX

N	=	� standard deviation of the equivalent normal distribution, 
and

	Φ(p)	=	CDF of a standard normal distribution.

Rearranging terms in Equation 12 yields two forms shown as 
Equations 13a and 13b:
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where Φ−1 (p) is the inverse CDF of the standard normal distribution.
The second requirement is expressed by Equation 14:
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where fX(p) is the PDF of the nonnormal distribution and ϕ(p) is the 
PDF of a standard normal distribution.
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Similarly, Equation 14 can be rewritten as Equation 15:
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Substituting Equation 13b into Equation 15 produces Equation 16:
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Equation 13a can be rearranged by substituting Equation 16 for 
Equation 17:
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Thus, the transformation from nonnormal variables to normal 
variables at a required point can be expressed with the two equiva-
lent, definitional parameters of a normal distribution, equivalent 
mean (µX

N) and standard deviation (σX
N). This transformation is 

required at each iteration of the HL-RF algorithm, which implies 
that µX

N and σX
N may change accordingly.

Corridor Travel Time Reliability

Travel time reliability in this study is in the sense of on-time perfor-
mance. A value of the reliability may be given according to travelers’  
anticipated travel time on a corridor at a specific DOW and TOD. 
Because the selected corridor travel time distribution can be estimated 
by the KDE technique, X is referred to as the random variable fol-
lowing the estimated corridor travel time distribution. The limit-state 
function in this single corridor study is therefore defined simply as

ATT (18)g X X( ) = −

where ATT is a traveler’s anticipated travel time on a selected corridor 
(a constant).

Because Equation 18 is a linear function, the reliability index, β, 
may converge in one iteration, unless the equivalent normal means 
and standard deviations of the original distributions change sig-
nificantly after the first iteration. Combining Equation 18 with the 
computing procedure for reliability index calculation, β is equal to 
ATT − µX

N/σ2N
X; the travel time reliability then can be calculated as 

Φ(β), where Φ(p) is the CDF of the standard normal distribution. 
The travel time distributions, however, are characterized by a specific 
time period, that is, DOW and TOD. With this formulation, the input 
parameters are included to obtain Equation 19:
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ATT

(19)

DOW,TOD
X
N

X
N( ) ( )= Φ β = Φ
− µ

σ






Equation 19 indicates that the travel time reliability of a partic-
ular single corridor, given a time period, can be represented as a  
value of the CDF of the standard normal distribution. In terms of 
the selection of the initial design point, any point falling into the 
range of the travel times works well; this study uses the mean of 

travel time as the initial design point. For this simple case of a single 
corridor and specific time period having a single distribution, Φ(β) 
represents a statement equivalent to FX(ATT), because X is a single 
random variable in this case. The primary benefit of the HL-RF 
method becomes evident when X is a vector of random variables 
representing distributions for multiple corridors.

Network Travel Time Reliability

Travelers often change freeways during a route before reaching their 
destinations. Network travel time reliability is essential for long trips 
that use multiple freeways. The network travel time reliability can 
be computed based on the multiple individual corridors on different 
freeways. An underlying assumption in this case is that the traffic 
flow relationships of corridors on various freeways are independent. 
Although the independence assumption exists with regard to the 
random variables, that separate travel time distributions are gener-
ated on the basis of real-life traffic data at specific TOD and DOW 
mitigates the effect of this assumption. Indeed, as illustrated later, 
there is a clear correlation between the travel time distributions 
for the same TOD and DOW on different corridors. Therefore, the 
assumption of independent random variables may be justifiable. 
From this assumption, the network travel time reliability is consid-
ered as an extension of the corridor travel time reliability problem. 
The limit-state function, which is built on travel time distributions 
of m corridors, is defined as follows:

, , . . . , ATT . . . (20)1 2 1 2g X X X X X Xm m( ) = − − −

where Xi is the random variables depicting the ith corridor estimated 
travel time distribution.

Equation 21 shows the network travel time reliability given a 
specific DOW–TOD time period and based on the limit-state function 
shown in Equation 20:
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where m is the number of corridors on different freeways.
The proposed corridor travel time reliability model is a special 

case of the proposed network corridor travel time reliability model.

Implementation and Applications

Study Data

The Missouri Department of Transportation is in charge of deploy-
ment and maintenance of more than 700 traffic sensors on freeways 
in the greater Saint Louis area. The department’s Transportation 
Management Center monitors traffic flow conditions by collecting 
vehicle speed, traffic volume, and occupancy information.

Two specific corridors on westbound I-64 in Saint Louis are used 
to build travel time distributions and calculate corresponding travel 
time reliabilities. The locations of the two corridors, designated as 
Corridor 1 and Corridor 2, are illustrated in Figure 1. The total lengths 
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of the two study corridors are 8.02 mi and 6.80 mi, respectively. It 
is generally accepted that peak hours occur in the late afternoon. When 
the vehicle volume exceeds the designed capacity of roadways, or 
the designed capacity is degraded because of some cause such as 
incidents, traffic congestion may occur. Travel time distribution and 
relevant travel time reliability may vary greatly under different traffic 
conditions. Corridor 1 sometimes experiences nonrecurring traffic 
congestion in the afternoon peak hours, and Corridor 2 suffers heavy 
traffic congestion in afternoon peak hours on weekdays. A potential 
cause for the recurring traffic congestion on Corridor 2 is the narrow  
lanes of the Daniel Boone Bridge over the Missouri River. The week-
day traffic data from June 1, 2012, to April 1, 2013, were selected as 
the study data set. Therefore, the parameter n in Equation 2 is 40.

Travel Time Distribution

A custom MATLAB program was built for computing the travel times 
on the two selected corridors for each DOW and TOD. The travel 
time distributions were estimated with the KDE technique with 
optimized bandwidths. Figures 2 and 3 illustrate the travel time 
distributions of Corridor 1 and Corridor 2 every weekday for when 
TOD is 9 a.m. and when TOD is 5 p.m., respectively. Traffic free-flow 
and congested conditions are distinctly shown, respectively, during 
the two time periods. Many distributions in the figures are clearly right 
skewed (for example, Figure 2, f, g, and h); however, others appear to 
be neither left nor right skewed significantly. The results confirm 
that no unique common theoretical probability distribution could 
be used to represent the travel time distributions.

Furthermore, compared with the distributions during the two 
time periods, it was found that (a) the travel speed may vary largely 
depending on the individual traveler in a traffic free-flow condition—
travelers had limited choices on the drive speed when traffic con
gestion occurred, leading to synchronized speed on corridors, and 
(b) a small collection of relatively large travel times (they are not  
outliers) at the afternoon peak affected construction of the cor

responding travel time distributions. These relatively large travel 
time values may have been recorded during incidents, such as vehicle 
crashes and heavy snow.

Corridor Travel Time Reliability

Figure 4 shows the travel time reliability calculated for a given time 
period for the two selected corridors when an anticipated travel time 
of the corridor is factored in. Figure 4, a and b, presents the travel 
time reliability distribution of each weekday on Corridor 1 during the 
two time periods. Given a specific anticipated travel time, the five 
values of the travel time reliability show less variance in Figure 4a 
than in Figure 4b. For example, with a traveler’s anticipated travel 
time set as 8 min 30 s when TOD is 9 a.m., the resulting reliability 
values on each weekday are 92% (Monday), 94% (Tuesday), 95% 
(Wednesday), 96% (Thursday), and 95% (Friday). These five reli-
ability values are not distinguishable because the corresponding travel 
time distributions shown in Figure 2, a through e, are concentrated 
around data points with a same travel time value, and the distributions 
are bounded within a small range.

However, when the anticipated travel time is 17 min in the after-
noon peak hour, the weekday reliability values are computed as 96% 
(Monday), 98% (Tuesday), 45% (Wednesday), 99% (Thursday), 
and 34% (Friday). In Figure 3, a through e, the mode of each single 
distribution is around 12 min. However, the ranges of distributions 
on Wednesdays (8 ∼ 35 min) and Fridays (8 ∼ 42 min) are wider than 
the others (roughly, 8 ∼ 20 min), indicating the two distributions have 
much more variance, and the traffic flow may be unstable during 
peak hours on Wednesdays and Fridays. Therefore, the reliability 
on Wednesdays and Fridays is lower than that on other weekdays in 
the afternoon peak hour.

The standard deviation distributions of the travel time reliability 
for each weekday, based on the anticipated travel time, are also shown 
in Figure 4, a and b. Scaled flatter standard deviation distribution 
indicates the traffic flow condition performs more similarly on 

FIGURE 1    I-64 study corridors: (a) Corridor 1, westbound from Highway K to Prospect Road, and (b) Corridor 2, westbound  
from Chesterfield Parkway to Research Park Drive. (Source: background image, https://maps.google.com.)

(a) (b)
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FIGURE 2    Travel time distributions estimated by KDE for TOD of 9 a.m. on Corridor 1: (a) Monday, (b) Tuesday, (c) Wednesday,  
(d ) Thursday, and (e) Friday; Corridor 2: (f ) Monday, (g) Tuesday, (h) Wednesday, ( i ) Thursday, and ( j ) Friday.
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FIGURE 3    Travel time distributions estimated by KDE for TOD of 5 p.m. on Corridor 1: (a) Monday, (b) Tuesday, (c) Wednesday,  
(d ) Thursday, and (e) Friday; Corridor 2: (f ) Monday, (g) Tuesday, (h) Wednesday, ( i ) Thursday, and ( j ) Friday.
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weekdays at the same time period, which may allow travelers to 
feel that traffic conditions are more stable. Therefore, throughout 
the week, there is significantly greater deviation in the travel time 
reliability in the afternoon peak hour than in the morning hour on  
Corridor 1. Similarly, Figure 4, c and d, presents travel time reli-
ability distributions on Corridor 2. The corresponding standard 
deviation distributions also indicate smaller variations in travel time 
reliability between 9 and 10 a.m., and greater variations occur in the 
afternoon peak hour.

The proposed travel time reliability method emphasizes travelers’ 
perspectives (anticipation), and it can help travelers perceive how 
reliable trips can be made, on time, for selected corridors within 
a specific time period. For example, the results of the proposed 
reliability method could inform a traveler who intends to travel on 
Corridor 1 that he or she would spend 9 min in the morning with 
relatively high reliability (probability); however, 9 min may not be 
enough to travel through Corridor 1 during the afternoon peak hour 
because of the lower reliability.

Comparisons of Travel Time Reliability  
Estimation Methods

Because the Florida reliability method also was developed from the 
traveler’s perspective (25), the results of the Florida method are com-

pared with the results of the proposed travel time reliability method. 
It is uncertain, however, which percentage above the median travel 
time should be used, and therefore several additional percentages (Δ) 
over median travel time—5%, 10%, 15%, and 20%—are considered 
as anticipated travel time. The same data set is used for all 17 TODs 
and 5 DOWs, and each method is executed to compute the percentage 
of reliable travel on the two corridors. Figure 5 shows a comparison 
of the results generated by the two methods on the two corridors 
on Wednesday.

Two features can be identified in Figure 5. First, as the anticipated 
travel time is increased, the travel time reliability generated from 
both methods increases. Second, the travel time reliability generated 
from the proposed method is found to be lower than that generated 
from the Florida reliability method, especially during peak hours. 
This is because the Florida reliability method is based on the prob-
ability mass function, where the travel time is considered as discrete 
random variables. Probability mass functions cannot fully represent 
travel time distributions, and critical high-fidelity information, such 
as steep localized distribution gradients, may be lost, especially when 
the travel time data set is not huge. However, in reality, travel time 
should be modeled with continuous random variables. The proposed 
method uses the continuous feature of travel time distributions 
generated from KDE. Therefore, the proposed method can better 
capture the detailed variability of traffic flow, especially the instability 
during peak hours.

FIGURE 4    Travel time reliability at given anticipated travel time: Corridor 1 (top), (a) TOD 5 9 a.m. and (b) TOD 5 5 p.m.,  
and Corridor 2 (bottom), (c) TOD 5 9 a.m. and (d ) TOD 5 5 p.m.

(a) (b)

(c) (d)
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Conclusions

Because of the large availability of real-life traffic data on freeways 
in Saint Louis, new methodologies were developed that make use of 
traffic data instead of simulation data. The nonparametric technique 
of KDE was used to estimate the travel time distribution given spe-
cific DOW and TOD periods, rather than conventional predefined 
parametric probability distributions such as single model (e.g., the 
lognormal distribution) or mixture model (e.g., two-state Normal 
distribution), to estimate travel time distribution. The KDE tech-
nique may offer greater flexibility in travel time distributions and 
may be more suitable given the availability of real-time traffic data. 
It eliminates the challenging requirement to identify and fit traffic  
data into predefined theoretical probability distributions. Also, KDE 
can be used for a wide variety of situations, especially when the 
traffic flow conditions are unknown ahead of time. The process of 

estimating travel time distribution with KDE for varied traffic flow 
conditions was considered as a generalization of the estimation 
process. Finally, KDE is more adaptable for constructing the travel 
time distribution of a user-defined route. The use of KDE could be 
limited when the number of data points is relatively small or outliers 
exist, because changes in the smoothing factor become more influ-
ential in those cases. Data preprocessing could be implemented to 
address this.

The HL-RF algorithm was used to calculate travel time reliability. 
First, the computing procedure for travel time reliability of corridors 
on a freeway was introduced. Network travel time reliability was then 
developed and was viewed as a generalized version of the corridor  
travel time reliability. The resulting equations for both corridor and 
network travel time reliability were presented as a value of the CDF 
for standard Normal distributions at the point of anticipated travel 
time. The latter required a transformation into equivalent standard 
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FIGURE 5    Results comparison for selected Wednesdays: (a) Corridor 1 and (b) Corridor 2.
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Normal variable form. Given probability distributions and an antic-
ipated travel time from travelers, the two equations of the corridor 
and network travel time reliability can be used to address the question, 
how reliable is my proposed trip time? The definition of travel time 
reliability is in the sense of on-time performance, and this study was 
conducted from the perspective of travelers.

In comparison with the results of the Florida reliability method 
with four thresholds, the results showed that the new method per-
formed similarly during nonpeak hours; however, it could capture 
detailed variability during peak hours, resulting in a major dis-
tinction between the Florida reliability method and the proposed 
method. The major advantages of the proposed method are that it 
(a) demonstrated an alternative way to estimate travel time distri-
butions when the choice of probability distribution family is still 
uncertain and (b) showed its flexibility for application to different 
levels of roadways (e.g., individual roadway segment or network).

Further research will use more real-life data to analyze the sen-
sitivity of this method and will attempt to address the following 
questions:

•	 How large a data set and what requirements are needed to estimate 
the travel time distribution and calculate the reliability accurately?
•	 Which method for smoothing factor identification can best meet 

the objectives and needs of this research?
•	 What are the specific differences when the KDE method is 

applied, versus predefined parametric distributions, on the same 
data set?
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