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Abstract
The primary objective of this study was to increase the sample size of public probe vehicle-based arterial travel time estima-
tion. The complete methodology of increasing sample size using incomplete trajectory was built based on a k-Nearest
Neighbors (k-NN) regression algorithm. The virtual travel time of an incomplete trajectory was represented by similar com-
plete trajectories. As incomplete trajectories were not used to calculate travel time in previous studies, the sample size of
travel time estimation can be increased without collecting extra data. A case study was conducted on a major arterial in the
city of Tucson, Arizona, including 13 links. In the case study, probe vehicle data were collected from a smartphone application
used for navigation and guidance. The case study showed that the method could significantly increase link travel time samples,
but there were still limitations. In addition, sensitivity analysis was conducted using leave-one-out cross-validation to verify
the performance of the k-NN model under different parameters and input data. The data analysis showed that the algorithm
performed differently under different parameters and input data. Our study suggested optimal parameters should be selected
using a historical dataset before real-world application.

Travel time plays a significant role in traffic planning,
traffic management, and advanced traveler information
systems (ATIS). In the past decades, there has been an
increasing trend of using large public probe vehicle data-
sets for arterial travel time estimation (1, 2). A public
probe vehicle dataset, or sometimes a ‘‘passive’’ dataset
(3), comprises probe vehicle data that are collected from
the public (navigation app, etc.) or public transport
(taxis, transits, etc.). Because probe vehicle data are gen-
erally collected via crowdsourcing, the data can support
travel time estimation on a large temporal and spatial
scale but at a relatively low cost.

Although probe vehicle travel time estimation has
plenty of advantages over traditional methods, it has sev-
eral limitations. First, accurate travel time estimation
requires a relatively high penetration rate and sampling
rate. The penetration rate is defined as ‘‘the flow fraction
of vehicles (unique devices) reporting to the probe data-
set as compared with the total flow of vehicles along a
road’’ and sampling rate is ‘‘the average rate at which
any device reports its position and velocity’’ (4). Because
probe vehicles are samples from all vehicles on the road,
the travel time estimation result may not be statistically
significant if the penetration rate is low, leading to a low
confidence level in the estimates. Also, a low sampling
rate is likely to result in poor accuracy of travel time

estimation. Most current probe vehicle datasets have a
relatively low sampling rate and penetration rate, which
limit their applications. Public probe vehicle datasets also
suffer from uneven temporal-spatial sample distribution.
For example, more data are collected on major arterials
but less on low-grade sections; and more data are col-
lected during peak hours but less collected during off-
peak times, or even none may be collected in the late
night hours.

As a result of the limitation of current probe vehicle
datasets, many current studies can be classified into two
research areas. The first research area aims to estimate
travel time when the sampling rate or the penetration
rate is low (1, 2, 5–8). Another research area focuses on
improving the accuracy of travel time estimation (9–12).
Although there are already several research reports on
travel time estimation using probe vehicle data, most of
the previous studies were built on the scenario in which
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the probe vehicle data have a relatively high penetration
rate but low sampling rate. Travel time estimation when
probe vehicle data have a good sampling rate but poor
penetration rate is a more relevant problem, given the
way probe vehicle data are collected today.

Accurate urban link travel time estimation can pro-
vide more useful information to agencies, researchers,
and travelers. This study aims to increase the sample size
of probe vehicle data by including partial vehicle trajec-
tories. Partial trajectories already exist in the probe vehi-
cle datasets but are currently treated as outliers or
discarded in travel time estimation. If the partial trajec-
tories can be utilized, the expected benefits are: (1) effec-
tively increasing the sample size available for travel time
estimation, (2) estimating more accurate travel time with
low penetration rates of probe vehicles, and (3) reducing
the costs of data collection.

Literature Review

Travel Time Data Sources

Traditionally, travel time estimation for an urban area
relies on fixed sensors, including loop detectors (13–15),
automated vehicle identification (16–18), Bluetooth/Wi-
Fi devices (19–21), microwave sensors (22), and so on.
All the above-mentioned data collection methods require
corresponding sensors installed to retrieve data. Once the
sensor is installed, it can continuously record data on the
monitored road section. However, the cost of installing
and maintaining fixed sensors is relatively high because
many sensors are needed to achieve the appropriate accu-
racy level or cover a large research area.

An alternative approach is to measure travel time by
mobile traffic sensors, for example, floating cars (23),
probe vehicles (24), cellular data, and so on. Vehicles
equipped with tracking devices (GPS or mobile phone)
can be used for collecting travel time at any location
without roadside equipment. However, mobile sensors
are still costly because stabilized data collection needs
operational vehicles running on the study area all the
time. Hence, they can only cover a limited number of
routes for a limited duration of time (6). As a result of
cost considerations, there are only a few traffic studies
using mobile sensors.

Many public vehicles (e.g., taxis, transit, etc.) are
equipped with GPS devices. These public vehicles, to
some extent, are probe vehicles, and they can collect
travel time data on most of the network links during their
service time with a low cost. In addition, with the popu-
larity of mobile phones, trajectory data that are collected
from mobile phones can also be used for travel time esti-
mation. The appearance of these new data sources

provides the possibility for large-scale and long-term
travel time estimation. Along with the growth and avail-
ability of probe vehicle datasets, numerous studies have
been conducted on travel time estimation using public
datasets. Zhan et al. successfully estimated hourly travel
time using New York City taxicab origin and destination
trip data (2). Jenelius and Koutsopoulos discussed a sta-
tistical model for urban road network travel time estima-
tion using vehicle trajectories obtained from low-
frequency GPS probes. A case study was conducted on
an arterial network in Stockholm, Sweden using taxi fleet
data (6).

According to the location where data are collected,
travel time can be classified into travel time on freeways
or travel time on arterials. Whereas vehicular flow on
freeways is often treated as uninterrupted flow, flow on
arterials is much more complicated because it can be
affected by signal delay, queue delay, pedestrians, and
entry vehicles. On highway or urban environments, as
travel time depends on the origin and destination, ATIS
normally use methods that calculate travel time at a link
or section level, rather than a trip level (25). Feng et al.
proposed that the distribution of link travel time in an
urban area can be approximated using mixtures of nor-
mal distributions. Although historical travel time data
are available, probe vehicle data can be used to identify
current traffic statement based on Bayes Theorem (26).

Probe Vehicle Travel Time Estimation Methods

Probe vehicles equipped with GPS systems can collect
position, speed, and time stamp data every few seconds
(27). Theoretically, probe vehicles can provide all the
information needed to calculate travel time on any area
at any time. However, because of the shortcomings of
current probe vehicle datasets, this approach still has
many limitations with respect to applications of probe
vehicle travel time estimation. The limitations primarily
come from two aspects: low sampling rate and/or low
penetration rate.

Low sampling rate has made it difficult to measure
travel time directly because little information is known
between every two continuous data points. As most cur-
rent datasets have a low sampling rate, there are many
papers that seek to calculate accurate travel time using a
sparse probe vehicle dataset. Wan et al. proposed a
method to reconstruct maximum likelihood trajectory of
probe vehicles between sparse updates based on the
expectation maximization algorithm (1). Another
method is to use models to estimate travel time (neural
networks, etc.). Zheng and Van Zuylen built a three-
layer neural network model to estimate complete link
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travel time for individual probe vehicles traversing the
link, and both simulation data and real-world data were
used to verify the result of the model (5).

When penetration rate is low, probe vehicle samples
cannot represent the entire population and the estima-
tion may not be accurate. There is much research on the
relationship between sample size and estimation error.
Patire et al. analyzed the estimation error when sampling
rate and penetration rate are different by a data fusion
approach (4). Bucknell and Herrera analyzed estimation
error of different combinations of penetration rate and
sampling rate on highways using a NGSIM dataset (7).
However, few research studies focus on how to increase
the sample size of probe vehicle datasets. The appearance
of public probe vehicle datasets increases the penetration
rate of probe vehicles, which is important for the appli-
cation of probe vehicle data. However, the problem of
low penetration rate is still very common, and this means
a way to increase probe vehicle sample size based on
existing datasets is beneficial.

In summary, there are several studies on the penetra-
tion rate requirement for probe vehicle travel time esti-
mation (4, 7, 8, 28), but only one study was identified
that focused on increasing penetration rate (29). In addi-
tion, there are few valid methods to increase probe vehi-
cle samples without adding new data sources. The
primary objective of this paper is to outline and evaluate
a process for increasing the number of usable samples
when calculating travel time using probe vehicle trajec-
tories. Currently vehicles must traverse an entire link for
inclusion in travel time calculations; however, many
vehicles do not traverse the entire link and thus are left
out of the calculation. Including those vehicles’ trajec-
tories increases the sample size without requiring an
increased penetration rate.

Data

Study Corridor

The study corridor is focused on Grant Road between I-
10 and Swan Road in Tucson, Arizona. Grant Road is a
major east–west direction arterial with annual average
daily traffic of 36,000 vehicles per day (30). The study
corridor is shown in Figure 1 with primary cross-streets
labeled. Most of the roads are five lanes in total, with
two lanes in each direction and a two-way left-turn lane.
At the time of data collection, the only six-lane sections
extended from Fairview Ave. to Stone Ave. and starting
at Swan Ave. heading eastward. All study links have a
speed limit of 40 mph (64 km/h). The links in the study
refer to the one-direction segment between each of the
contiguous primary cross-streets on Grant Road. For
example, the eastbound Oracle–Stone link refers to the
road on Grant Road between Oracle Road to Stone
Road in the east direction as shown in Figure 1. Data
collection was conducted in both directions.

Probe Vehicle Trajectories

Vehicle trajectory data are used to extract travel time
information and to further build a historical database.
The data are collected by a smartphone app, ‘‘Metropia’’;
when a user starts a trip using the app, the internal GPS
module built into the smartphone is activated and starts
to record the second-by-second data. These data, includ-
ing detailed position such as latitude, longitude, heading,
timestamp, velocity, and corresponding link in the road-
way network, are collected at a fine time interval and sent
back to the cloud server, where they are stored and will
be used for further analysis.

Figure 1. Study corridor.
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The original data were collected from January 1 to
December 31, 2015. There were 57,645,478 GPS points
collected from 1,837 users and 43,315 trips in Tucson.
The sampling rate of probe vehicle data is 1 second. In
addition, roadway geometry data were acquired for the
entire city of Tucson. An example of probe vehicle raw
data on Grant Road is shown in Figure 2.

The data underwent an extensive selection and clean-
ing process including the following steps:

� Selection of trajectories at the study corridor
� Data cleaning through heuristic checks
� Map matching, to pair probe vehicle to roadway

links
� Movement determination to identify travel

movements
� Dimension reduction of trajectories to distance-

time attributes

Methodology

Definition of Trajectories

There are two types of trajectories: complete trajectories
and incomplete trajectories. Complete trajectories are
defined as those from probe vehicles that passed through
both an upstream and downstream intersection sur-
rounding a link, whereas incomplete trajectories are from
the probe vehicles that only traverse part of the link.

The concept of this research is to utilize incomplete
trajectories in travel time estimation. For this paper,
three types of incomplete trajectories are defined based
on their relationship to the two intersections surrounding
a link, as shown in Figure 3. The first type of trajectory
is the one that passes the upstream intersection but exits
the link before reaching the downstream intersection.
The second type passes through neither intersection sur-
rounding the link. The third type enters the link after the
upstream intersection, and passes through the down-
stream intersection.

k-Nearest Neighbors Regression

The k-Nearest Neighbors regression algorithm (k-NN) is
a non-parametric technique and it has been widely used
in travel time estimation. Handley et al. used flow, occu-
pancy, and other variables as inputs of the k-NN algo-
rithm to estimate travel time on freeways (31). Robinson
and Polak successfully used single loop detector data as
inputs of k-NN to estimate travel time within an urban
area. They compared different parameters of the k-NN
algorithm and the results of the k-NN algorithm with
other algorithms such as neural network. They also
inferred that there is a high potential to use the probe
vehicle GPS data as the input of the k-NN algorithm
(14). Zhou et al. applied sparse probe vehicle data as the
input of the k-NN algorithm to estimate link travel time
in an urban area. The study suggested that the k-NN

Figure 2. Visualization of example probe vehicle data (7:30–9:30 AM, Nov 17th, 2015).
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algorithm performed better than the neural network
model (32).

k-NN has many advantages over other regression
algorithms in terms of probe vehicle data analysis. The
assumption under k-NN regression is that target value is
represented by k closest samples. Compared with para-
metric techniques such as linear regression, k-NN has no
target function. The lack of a target function makes it a
more suitable approach to modeling to probe vehicle
data in urban areas, because probe vehicles are greatly
affected by surrounding environment (road geometry,
signal timing, time of day, and other vehicles, etc.).
Because of that variation in road environment, a fixed
target function may not be able to fit the data well.

The problem in regression is to predict labels y0 2 R
d

for new patterns x0 2 R
q based on a set of N observa-

tions, that is, labeled patterns x1, y1ð Þ, . . . , xn, ynð Þf g. For
an unknown pattern x0, k-NN regression computes the
mean of the function values of its k-nearest neighbors,
shown in Equation (1) (33).

fk�NN x0ð Þ= 1

K

X

i2N k x0ð Þ
yi ð1Þ

where N is neighborhood set, set N k x0ð Þ containing the
indices of the k-nearest neighbors of x0.

The aim is to use k-NN to estimate link travel time
using one or more incomplete trajectories of a probe
vehicle traveling on the link. Because the incomplete tra-
jectory did not cross the whole link, the link travel time
cannot be directly calculated. However, there are likely
historical complete trajectories under similar traffic con-
ditions that can be used to represent the incomplete

trajectory. k-NN regression uses the k most similar com-
plete trajectories to represent the link travel time,
fk�NN x0ð Þ. For example, if the link travel time of the k
most similar complete trajectories are yi1, yi2, yi3, yi4, yi5

separately, the predicted link travel time of the incom-
plete trajectory is, using Equation 1, yi1 + yi2 + yi3 + yi4 + yi5ð Þ

5
.

The distance between an incomplete trajectory and
each complete trajectory is used to find the k-nearest
neighbors. The procedure to calculate the distance
between an incomplete trajectory and a complete trajec-
tory is shown using Figure 4. The length of the study link
is L. After the dimension reduction, vehicles trajectories
have a position on the link at each timestamp.
Dimension reduction makes the k-NN algorithm simpler
and allows for direct comparison of travel time-related
attributes rather comparing the exact path taken. There
are two trajectories; the longer one is a complete trajec-
tory and the shorter one is an incomplete trajectory. The
study link is divided into n segments (n is 8 in Figure 4)
on average and each segment has a length of L

n
. In Figure

4, the complete trajectory passed all the segments and
the incomplete trajectory passed five segments, three of
which were fully passed. Ti is the segment travel time for
segment i that the complete trajectory has fully traversed,
and ti is the segment travel time for segment i that the
incomplete trajectory has fully traversed. The i segments
used are those the incomplete trajectory fully passed.
Segment travel time is only calculated when a probe
vehicle’s trajectory has fully traversed the segment. For
example, the red, dashed line in Figure 4 is the trajectory
that did not fully pass any segments and those red por-
tions are not used to calculate segment travel time. The
red part of the trajectory represents the vehicle entering

Figure 3. Definitions of complete and incomplete trajectories.
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and/or exiting the link, so it is unlikely to reflect actual
traffic conditions.

The distance between two trajectories S is defined by
Equation (2):

S =
X

i2M

Ti � tið Þ2 ð2Þ

where S is the distance between two trajectories, Ti is the
time interval for the complete trajectory to pass the ith
segment; tiis the time interval for the incomplete trajec-
tory to pass the ith segment; i is the sequence of segments;
and M is the set of segments that the incomplete trajec-
tory has fully passed.

Validation of Method

Theoretically, there is no ground truth for an incomplete
trajectory because the link travel time for the incomplete
trajectory cannot be calculated. However, a method was
developed to evaluate the algorithm by using an incom-
plete trajectory generated from a complete trajectory as
the input. A complete trajectory was cut-off to simulate
an incomplete trajectory with a known ground truth.
Using this method, the performance of the algorithm can
be evaluated based on the ability to accurately recreate
trajectories.

Leave-one-out cross-validation (LOOCV) (34) was
utilized to evaluate the algorithm with the historical com-
plete trajectory dataset. In each round of LOOCV, one
complete trajectory was converted into an incomplete
trajectory and this incomplete trajectory was input into
the k-NN algorithm. Two measures of accuracy were
used to verify the algorithm’s performance: mean abso-
lute error (MAE) and mean absolute percentage error
(MAPE). MAE shows the average error of each round in
LOOCV. As link travel time is related to link length,
MAE shows an average time difference between algo-
rithm output and ground truth but it cannot reflect the
performance difference between links. MAPE shows the

error as a percentage and the performance can be com-
pared between links. The definitions of the two measures
are shown in Equations (3) and (4), respectively.

MAE=
1

N

XN

i= 1

gi � eij j ð3Þ

MAPE =
1

N

XN

i= 1

gi � eij j
gi

ð4Þ

where N is the number of LOOCV times, and gi is the
ground truth of link travel time in the ith LOOCV, and ei

is the estimated link travel time in ith LOOCV.
Sensitivity analysis was conducted to determine the

preferred inputs for the k-NN algorithm, using the
LOOCV approach. Numerous inputs can be tested, but
four were selected for preliminary testing. The selected
parameters for this research were the length of the incom-
plete trajectories, incomplete trajectory type generated in
LOOCV, and the values of k and n in the k-NN regres-
sion algorithm.

Results

Effectiveness of Sample Size Increasing

Incomplete trajectories in November 2015 were used as
the input and complete trajectories from January to
October 2015 were used as the historical dataset.
Although a specific month was selected, the sensitivity
analysis can indicate how well this approach may hold
during other months. The sample size comparison is
shown in Figure 5. After the implementation of the k-NN
algorithm, around half of the links have a sample size that
has increased more than 30% and some links even have a
sample size increased more than 100%. There are two
links that have no improvements, westbound through
movement from First Ave. to Stone Ave. and eastbound
through movement from Dodge Blvd. to Alvernon Way.
A visual inspection of these two links shows that the per-
formance of the algorithm is related to link geometry
characteristics and land use around the link. Land use on
the north side from First Ave. to Stone Ave. is primarily
residential, which may explain the shortage of incomplete
trajectories. The link of Dodge Blvd. to Alvernon Way
was very short and there were very few access points, and
this could be the reason why incomplete trajectories were
not captured. These results show that sample size can be
substantially increased, depending on roadway geometry
features such as access points.

Sensitivity Analysis of the k-NN Model

Sensitivity analysis was conducted to determine the pre-
ferred inputs for the k-NN algorithm, using the LOOCV

Figure 4. Trajectory similarity calculation.
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approach. Four parameters were selected for preliminary
testing. The selected parameters for this research were the
length of the incomplete trajectories, incomplete trajec-
tory type generated in LOOCV, and the values of k and n
in the k-NN regression algorithm. These parameters were
selected because of their importance in laying the ground-
work for future application of this method.

To identify the algorithm’s sensitivity to incomplete
trajectory length, the size of the incomplete trajectories
was varied between 5% and 90%. Complete trajec-
tories were converted as type 2, which is the type of
incomplete trajectories that enter after the upstream
intersection and leave before the downstream intersec-
tion. Only complete trajectories that were in peak
hours were used. The performance of the algorithm
continuously drops with the shortening of incomplete
trajectory length. Both MAPE and MAE reach to their
minimum values when incomplete trajectory length is
90% of the link length. The minimum and maximum
value of MAPE is 6.8% and 33.3%, respectively, and
the minimum and maximum value of MAE is 5.7s and
22.1s, respectively. MAPE and MAE were negatively
associated with incomplete trajectory length. As longer
incomplete trajectories contain more information
about the complete trajectories the error is smaller, on
average, for those longer trajectories. These results are
shown in Figure 6.

Figure 5. Sample size and travel times by links.

Figure 6. Sensitivity analysis on varying incomplete trajectory
lengths; (a) MAPE (b) MAE.
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To understand how the algorithm performs based on
the trajectory type, the MAE and MAPE were calculated
for each of the three types independently, shown in
Table 1. Complete trajectories were converted into 50%
of the link length. Only complete trajectories that were in
peak hours were used. Incomplete trajectory type 1 per-
formed worst with an MAE of 18.3s and an MAPE of
39.1%. Incomplete trajectory type 2 and type 3 per-
formed almost the same with an MAE around 7s and an
MAPE around 20.7%. Incomplete trajectory type 2 and
type 3 performed better than type 1 on average. It can be
inferred from the result that incomplete trajectory that
contains queue information performs better.

Finally, two input parameters to k-NN regression
were simultaneously varied in the number of similar
segments (k) and the segment length (n). The value of k
was varied between 2 and 50. This was done for three
different scenarios, breaking the links into 4, 20, and 50
segments. The MAE and MAPE are shown in Figure 7.
With the increase in the number of similar samples, the
performance of the algorithm improved at first. When
the number of similar samples reached a threshold, the
algorithm performed worse with the increase of the
number of similar samples. The result was similar to
results found in many other k-NN applications. We
suggest that an appropriate number of similar samples
needs to be selected before real-world application of the
algorithm.

The results of the sensitivity analysis show that one
can successfully recreate the complete trajectories using
incomplete trajectories in certain cases using k-NN
regression. Although there is no ground truth to evaluate
the impact the algorithm has on the accuracy of the travel
time calculation, the fact that the complete trajectories
were able to be recreated likely means the travel time cal-
culation would not change significantly for segments that
already have a sufficient number of samples. However,

for segments where the sample size is sparse, including
incomplete trajectories should be able to help provide
more accurate estimates by virtue of the increased sample
size. In addition, it can be used in more specific scenarios
where sample size may be an issue, such as movement-
based travel time calculation.

As the model could be affected by different traffic con-
ditions, such as free-flow or congested conditions, the
model result was analyzed under different times of day.
As the time of day cannot be simulated, input data were
classified into several categories by time of day. Morning
peak was defined as 7:30 AM to 9:30 AM on weekdays
and evening peak was defined as 4:00 PM to 6:00 PM on
weekdays. Note that, even though the input data are clas-
sified as being at peak, the training set still covers all time
periods because the assumption is that a trajectory can
reflect all traffic conditions.

Table 2 shows that the algorithm performed better
during peak hours. The average of MAPE during peak
hour is around 14% and the average of MAE during
peak hour is about 10s. The algorithm performed worse
during non-peak hour with a MAPE of 26.4% and a
MAE of 12.4s. The reason the algorithm performed bet-
ter during peak hour may be because vehicles have simi-
lar trajectories during peak hour, as traffic is more
congested. Vehicle trajectories during non-peak hour
may depend more on drivers’ behavior. Similar trajec-
tories during non-peak hour may be caused by similar
driving behavior rather than traffic condition. These

Figure 7. k and n sensitivity analysis: (a) MAE sensitivity and (b) MAPE sensitivity.

Table 1. Algorithm Performance by Incomplete Trajectory Type

Type 1 Type 2 Type 3

MAE/Second 18.3 6.5 7.5
MAPE 39.10% 20.50% 20.90%
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results may also indicate how well one could expect the
method to perform at different times of year. As the
method performs better in congested conditions, one
could expect the months with more frequent congestion
to see better performance. For Tucson, those months are
when the University of Arizona is in session and during
the winter when the population grows because of the
pleasant climate.

Conclusion

This study proposed a k-NN based travel time calcula-
tion method using incomplete trajectories to generate
additional travel time samples. Incomplete trajectories
were compared with historical complete trajectories and
link travel times of incomplete trajectories were repre-
sented by these similar complete trajectories. Both the
feasibility of the model and the sensitivity of the model
were considered in the study. The case study showed that
sample size increased 42% on average after implement-
ing k-NN method. The results showed that the effect of
sample size increasing is related with road geometry and
driving behavior of the study area. As the corridors all
had pre-timed signals, the conclusion only apply to pre-
timed control, and corridors with other control methods
require further analysis and validation.

The sensitivity analysis of the k-NN algorithm showed
that the algorithm performed differently under different
parameters and input data. The research into the key
parameters and input data concluded the following:

(1) Both the number of similar samples and the
number of road segments influence the accuracy
of the algorithm. The study suggests that
although a small number of road segments can
improve the performance of the algorithm in the
study, a small number of road segments would
also reduce the accuracy of similarity calculation
between trajectories.

(2) The length of incomplete trajectory has a posi-
tive correlation with performance of the algo-
rithm. The study suggests that longer trajectory
contains more traffic information so complete
trajectories found can better estimate the travel
time of incomplete trajectories.

(3) Incomplete trajectories that contain queue infor-
mation performed better. Link travel time is the
summary of free-flow travel time and delay, in
which delay is the key element that decides link
travel time. Queue information is highly corre-
lated with delay so the algorithm performed bet-
ter when the input data reflected queue
information.

The k-NN algorithm developed in this study can help
increase public probe vehicle-based travel time collection
without collecting extra data. The study also gives some
suggestions on the performance of the algorithm under
different parameters and input data. This study suggests
that, before real-world application, optimal parameters
need to be selected using a historical dataset for an accu-
rate result. In future studies, quantitative analysis on the
sample size increasing potential under different road geo-
metry and driving behavior can be conducted. The result
can help decision makers choose a better strategy to col-
lect more data. In addition, the performance of the model
can be further verified in a full connected vehicle environ-
ment. The authors recommend that future studies could
focus on those issues.
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