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Distributed Signal Control of Arterial Corridors
Using Multi-Agent Deep Reinforcement Learning

Weibin Zhang , Chen Yan, Xiaofeng Li , Liangliang Fang, Yao-Jan Wu , and Jun Li , Senior Member, IEEE

Abstract— Traffic congestion at signalized intersections often
leads to serious impacts on adjacent intersections on a corridor.
To enhance intersections’ throughput efficiency, traffic signals
are commonly coordinated across intersections. Traditional signal
coordination methods control the adjacent intersections by setting
a fixed phase offset. However, these traditional coordination
methods may have poor adaptability to dynamic traffic condi-
tions, which can cause additional congestion. To reduce arterial
traffic delays, this paper develops an adaptive coordination
control method based on multi-agent reinforcement learning
(MARL). Most existing MARL-based methods rely on imprac-
tical assumptions to improve their performance in complex and
dynamic traffic scenarios. To overcome these assumptions, this
paper proposes a fully scalable MARL algorithm for arterial
traffic signal coordination based on the proximal policy optimiza-
tion algorithm. We apply a parameter-sharing training protocol
to mitigate the slow convergence due to nonstationarity and to
reduce computational requirements. In addition, a new action
setting is designed by using the lead-lag phase sequence to
simultaneously improve the implementation and coordination
flexibility of the method. Extensive simulation experiments and
comparisons with existing methods demonstrate that the pro-
posed method performed stably in both simulated and real-
world arterial corridors. Hence, the proposed signal coordination
method can alleviate traffic congestion more effectively than
existing traditional and MARL-based methods.

Index Terms— Arterial traffic signal control, reinforcement
learning, deep reinforcement learning, multi-agent reinforcement
learning, proximal policy optimization.

I. INTRODUCTION

W ITH global increases in urban populations and eco-
nomic development, urban transportation demands are

growing and traffic congestion is becoming increasingly
severe. Dynamic coordination of traffic signals between mul-
tiple intersections in arterial corridors and effective diversion
of arterial vehicles are potential ways to alleviate urban traffic
congestion. At present, signal coordination across multiple
intersections on arterial corridors is mainly achieved using
traditional methods, such as Maxband [1] and Multiband [2],
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and green wave methods, such as graphical methods and
numerical solutions. These traditional methods have difficulty
in effectively coordinating complex dynamic traffic flows as
traffic flows are time-varying and vehicle speeds are easily
affected.

With the development of deep neural networks (DNNs) [3]
and traffic detection technologies, deep reinforcement learning
(DRL) has become a potential method for arterial traffic signal
control (ATSC) based on real-time traffic measurements. DRL
methods have greater advantages than reinforcement learning
(RL) methods in solving traffic signal control (TSC) problems
with high-dimensional state spaces. Current DRL methods can
be categorized into two categories: value-based and policy-
based algorithms. The Deep Q-Network (DQN) is a well-
known value-based method that is the most commonly used
DRL algorithm for single-intersection TSC. The proximal
policy optimization (PPO) algorithm estimates an advantage
function by generalized advantage estimation (GAE) to make
a compromise between variance and bias. The PPO is simple
to implement with excellent stability and reliability and is the
focus of this paper [4].

The application of multi-agent reinforcement learning
(MARL) to multi-intersection TSC is a recent research
hotspot [5], [6]. However, many challenges remain in applying
it to multiple intersections. Although DNNs have improved
the scalability of RL, it is still infeasible to train a cen-
tralized policy [7] for ATSC because the joint state space
and action space increase exponentially with the number of
intersections. A recent study applied independent-advantage
actor-critic (IA2C) to large-scale TSC and was inspired by
independent Q-learning (IQL) [8] but replaces Q-learning
with advantage actor-critic (A2C). IQL and IA2C are fully
extensible, but learning strategies for each agent imposes
computational and memory stress, and non-stationary environ-
ments will cause convergence problems. To resolve the above
issues, the proposed method uses the decentralized parameter-
sharing training protocol [9] for its ability to alleviate the
convergence problems caused by nonstationarity and reduce
training time.

An effective action definition is a prerequisite for MARL
in finding effective ATSC strategies. Most studies generally
use two types of action settings. One is the variable-phase
sequence, which is flexible but challenging to implement in
real-world ATSC [5], [10], [11], [32] because of the increasing
likelihood of traffic accidents due to the uncertainty of the next
phase. The other is the fixed-phase sequence [12], [13], [14];
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however, traditional split phasing [12] and lag-lag left-turn
signal phases are not flexible enough to adapt to dynamic
traffic flows. Therefore, we propose a type of flexible action
setting that uses the lead-lag left-turn phase [15]. The main
contributions of the proposed method are as follows.

1) A MARL-based method is proposed to improve the
traffic efficiency of arterial corridors by dynamically
controlling the signals at multiple intersections. In the
proposed method, local policy and value regressors
are based on local observations instead of impractical
assumptions due to the limitations of traffic detection
technology and communication latency. Additionally,
the decentralized execution of this method enables real-
time decision-making in real-world ATSC because there
is no need for communication when making decisions.
Compared with traditional methods, TSCs can effec-
tively cooperate under different traffic demands to not
only optimize the efficiency of the through movement
on major corridors but also arterial roads with all traffic
directions.

2) The independent PPO (IPPO) algorithm is proposed for
ATSC, which extends the idea of IA2C to PPO. To make
the proposed method more stable and implementable,
a parameter-sharing PPO (PS-PPO) algorithm is also
proposed based on PPO with the clipped surrogate
objective. The use of parameter sharing can mitigate the
slow convergence caused by the partial observability and
nonstationarity of IPPO, and enhance training stability
and efficiency.

3) Two constraints in real-world ATSC are considered
when defining the action and reward components of the
MARL model. Under the constraint that the signal status
can only switch according to a fixed phase sequence,
we propose a more effective action setting using the
lead-lag left-turn phase. Moreover, the learned policy
restricts queue spillback, since priority is given to lanes
that overflow more easily.

The rest of this paper is organized as follows. Section II
reviews related studies. The problem statement is presented in
Section III. In Section IV, we propose the IPPO and PS-PPO
algorithms for ATSC. Section V elaborates upon the imple-
mentation details of the proposed MARL model. We describe
the simulation used to evaluate our method, and its results,
in Section VI. Finally, we conclude the paper in Section VII.

II. RELEVANT STUDIES

In traditional ATSC, setting a fixed offset (i.e., the signal
cycle start time difference between the intersections and a
master clock) among all intersections along an arterial corridor
is the most common way to achieve signal coordination.
The MAXBAND model [16] used mixed-integer linear pro-
gramming to optimize cycle length, speeds, offsets, and left-
turn phase sequence in order to achieve maximal green-wave
bandwidth. The MULTIBAND system subsequently developed
by Gartner et al. [17] is a two-way green-wave control model
that can adapt to different traffic flow patterns on each link
of an arterial road. To make existing methods of green-wave

coordination control suitable for arterial corridors under asym-
metric two-way traffic conditions, Kai et al. [18] proposed an
algebraic method of bidirectional green-wave coordinated con-
trol by using phase combination and velocity transformation
methods. Unlike green-wave methods, max pressure [19], [20]
stabilizes the queues and aims to maximize the throughput
of the network. However, these existing traditional methods
are not guaranteed to provide the best signal timing in the
field under variable traffic conditions because they rely on an
assumption of simplified traffic conditions.

Efforts have been made to apply the recently-developed
MARL method to multi-intersection traffic signal coordination
control. In MARL-based signal coordination control, there are
usually two types of controllers: joint action learners [21],
[22] and independent learners. Joint action modeling methods
learn to choose the optimal joint action for different joint
observations. The disadvantage of these methods is that the
dimensions of the state space and action space increase expo-
nentially with the number of intersections. To alleviate this
problem, Literature [22] decomposes the global q-value into
a linear combination of local Q-values based on the max plus
algorithm [35]. Some other works [36], [37] further treat the
joint Q-value as a weighted sum of local Q-values. Unlike
joint action learning methods, each agent learns an indepen-
dent policy based on local observations, and independent RL
methods allow each agent to learn an independent policy based
on local observations [38], [39], [40], [41], [42], [43]. In some
scenarios with a simple arterial corridor, these methods can be
applied to optimize signal timing plans with a maximize green
wave. However, the problem of non-stationarity is exacerbated
when the road environment becomes complex [33], and there
are challenges in converging to a stationary policy when there
is no communication or coordination mechanism between
agents. Literature [32] designs a reward function based on
max pressure theory to achieve coordinated control of arterial
corridors, but the action set was based on a non-fixed phase
sequence. When communication is reliable between agents,
the traffic status of neighbors is typically added to the agent’s
observations [44], rather than just using observations from
local intersections. Literature [45], [46] propose to exploit the
graph attention network [34] to learn the dynamic interactions
between hidden states of adjacent intersections. The newly
proposed parameter sharing method [9] can effectively alle-
viate the environmental non-stationarity in cooperative multi-
agent control without the need for communication between
agents. Recent research has been more inclined to use variable
phase sequences [11], [12] to define actions that may be
unsuitable for the real world. To further improve the applica-
bility and efficiency of the proposed method, we added a
constraint where the signal status switches using a fixed phase
sequence with the lead-lag left-turn phase sequence.

III. PROBLEM STATEMENT

The goal of this paper is to minimize global traffic con-
gestion throughout the entire arterial corridor by distributed
control of all the traffic lights with better adaptability to
dynamic traffic conditions and fewer computational require-
ments. As shown in Fig.1,we consider an arterial with N
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Fig. 1. Multi-agent deep reinforcement learning model for arterial traffic
signal control.

intersections, N > 1. Each intersection has multiple crossroads
consisting of incoming lanes and outgoing lanes. The vehicle
clearance process on each incoming lane follows the current
signal phase, which is one of the legal combinations of red and
green signals for all traffic lights at an intersection. We assume
that right-turning vehicles at all intersections are not controlled
by signals since vehicles are allowed to turn right during a
safe gap. According to real-world constraints, the phases are
switched in a fixed order. When the signal in one direction
turns green to red, the yellow duration is inserted for ty

seconds. In order to ensure that pedestrians have enough time
to cross the street, the green duration t of each phase shall not
be less than tmin (minimum green time), and the green time
tcannot be greater than tmax (maximum green time). In this
study, traffic state information from the incoming lanes of local
intersections is collected via camera sensors, as shown by the
red dotted line in Fig. 1. However, traffic state may be very
difficult to achieve in real-time ATSC due to sensor faults,
communication delays, and losses of signal controllers. There-
fore, each agent can only observe part of the state of the entire
arterial corridor, which is coincident with reality and enhances
the authenticity of the proposed model. In the real world,
adjacent signalized intersections on arterial corridors may have
a short distance causing spillback. In the case of over-saturated
traffic, spillback is likely to occur, and adjacent agents need
to coordinate effectively to prevent overflow. In order to
dynamically adjust signals at all intersections according to
different traffic states under the above constraints by MARL,
the average delay of all vehicles on an arterial corridor is
minimized. Naturally, such an arterial traffic control problem
can be modeled as a decentralized partially-observable Markov
decision process [25] (Dec-POMDP) defined by the tuple
�N ,S,A,Z, P, r, O, γ �. Here N := {1, . . . , N} is a finite
set of N agents each of which controls all traffic lights of an
intersection. Sis the set of possible global states of the entire

TABLE I

NOTATIONS

traffic environment. At each time step t , each agent i ∈ N can
only draw an individual local observation oi

t ∈ O (including
the length of queues on incoming lanes and vehicle stop
delays) from the observation kernel Z (st , i) instead of being
able to observe the full state st ∈ S. Each agent i ∈ N uses a
decentralized policy πθi

(
ai

t |oi
t

)
to select its action ai

t ∈ A(i.e.,
change the duration of the current signal phase) according
to the local observation oi

t ∈ O. This yields the joint action
at :=

{
ai

t

}N
i=1 ∈ AN . After taking the joint action, the state of

the entire arterial corridor changes from st to st+1 according
to the state transition probability P (st+1|st , a). Subsequently,
the agents receive a scalar team reward rt = r (st , at ) (i.e.,
queue length and stop delay across the arterial corridor after
adjustment for phase time at all intersections). All agents
work together to maximize their expected discounted return,
E

[∑T
t �=t γ t �−trt �

]
, where γ ∈ 0, 1) is a discount factor.

In summary, the problem contains three constraints, namely
(1) minimum and maximum green time, (2) anti-overflow,
(3) local observation by sensors. Under the above constraints,
the goal of each agent is to select the optimal time period
from historical experience to optimize the traffic efficiency of
arterial corridors. Table I shows the meaning of each notation.

IV. DEEP REINFORCEMENT LEARNING ALGORITHM FOR

ARTERIAL TRAFFIC SIGNAL CONTROL

In this section, first, IPPO is formulated by extending the
idea of IA2C to the PPO algorithm. Then, parameter sharing
is applied to IPPO to mitigate the slowing of convergence
due to nonstationarity. One limitation is that the observation
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Fig. 2. Overview of the full decentralized framework of the IPPO algorithm.

spaces of all agents must be the same size since there is a
single neural network. However, in practice, the numbers of
edges and lanes at each intersection in an arterial corridor
may be different. We resolve this problem by “padding” the
observations of each agent to a uniform size.

A. Multi-Agent Independent PPO Algorithm

High sample complexity and the need to carefully adjust
the step size are the drawbacks of most strategy gradient algo-
rithms [26]. Both issues are resolved by the PPO algorithm.
Inspired by the IA2C algorithm and given the advantages
of the PPO algorithm, we formulate the IPPO algorithm
by deploying PPO algorithms independently on each agent.
In IPPO, each agent needs to update its own actor and critic
network. Fig. 2 shows the overall framework of the IPPO
algorithm, which is a framework of decentralized training and
decentralized execution. The training process is represented by
the dotted lines in Fig. 2. The global information, including st

and at , is not available for training and execution. In prac-
tical implementation, the input of the actor network is oi

t ,
which is the partial state of statest . After receiving a local
observationoi

t , each actor chooses their action ai
t according

to their own current policy πθi

(
ai

t |oi
t

)
and obtains feedback

and a new observation oi
t+1 from the environment. We use a

truncated version of generalized advantage estimation (GAE)
[27] based on independent learning because it can compromise
between variance and bias. Each agent learns a local observa-
tion from critic Vφi

(
oi

t

)
parameterized by φi , and GAE is used

to estimate the advantage function for each agent i ’s trajectory
element,

Âφi
t = δi

t + (γ ε) δi
t+1 + · · · + (γ ε)T−t+1 δi

T+1, (1)

where δi
t = r i

t + γ Vφi

(
oi

t+1

) − Vφi

(
oi

t

)
is the Temporal

Difference (TD) error at time step t . Each agent’s independent
policy updates are clipped based on the objective:

J (θi ) = E
o,a∼πθk

[
min

(
li
t (θi ) Âφi

t ,

cli p
(

li
t (θi ) , 1− ε, 1+ ε

)
Âφi

t

)]
, (2)

Fig. 3. Overview of the PS-PPO algorithm framework, in which the network
parameters φ and θ are shared across critics and actors, respectively.

where li
t (θi ) = πθi (at |ot ,i)

πθi,old (at |ot ,i)
is the likelihood ratio of the new

policy πθi to the old policy πθi,old , cli p (lt (θ) , 1− ε, 1+ ε)
clips lt (θ) in the interval [1− ε, 1+ ε] to remove incentives
for the policy to change dramatically, and ε is a small
hyperparameter that roughly represents the gap between the
new and old policies.

The policies are updated via stochastic gradient ascent with
the Adam algorithm. Similarly, the critic parameter φi of each
critic is updated by minimizing the loss:

L (φi ) = E
o,a∼πθk

[(
Vφi

(
oi

t

)
−

∑T

t �=t
γ t �−tr i

t �

)2
]
. (3)

During training, this method requires updating an actor net-
work parameterized by θi and a critic network parameterized
by φi for each agent, which leads to huge computational and
memory burdens in MARL tasks. Moreover, each agent adjusts
its own policy dynamically and the stored experience rapidly
becomes obsolete, so the environment becomes dynamic and
non-stationary. In order to solve these problems, the PS-PPO
algorithm is proposed.

B. Multi-Agent Parameter-Sharing PPO Algorithm

Unlike IPPO, the network parameters φ and θ are shared
among critics and actors, respectively. It was demonstrated
in [28] that for any partially observable Markov decision
process (POMDP) with disjoint observation spaces, there
exists a single (shared) policy π∗θ : (∪i∈N Oi )× (∪i∈NAi )→
[0, 1], which is optimal for all agents. As shown in Fig. 3, the
experiences of all agents are used to jointly train the shared
policy and critic network. Although the parameters are shared
between agents, different agents can select different actions
because each agent receives different observations, including
their respective indexes according to the “agent indication”
technique [9]. In the decentralized parameter-sharing training
protocol, execution is decentralized but learning is not. Each
agent i takes action according to the shared policy and rollouts
of individual trajectory τ i = {

oi
t , ai

t , r i
t

}
, t ∈ [0, T ], where r i

t
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is the local reward for agent i . We do not need to learn an
actor and critic for each agent, so we simply update the shared
policy πθ . Then, the surrogate objective Eq. (2) becomes:

J (θ) = E
o,a∼πθk

[
min

(
li
t (θ) Âi

t ,

cli p
(

li
t (θ) , 1− ε, 1+ ε

)
Âi

t

)]
, (4)

where li
t (θ) = πθ (at |ot ,i)

πθold (at |ot ,i)
, and Âi

t is the GAE estimator based

on the current critic Vφ̂ ; i.e., δi
t = r i

t + γ Vφ̂

(
oi

t+1

)+ Vφ̂

(
oi

t

)
.

The shared critic also needs to be updated by minimizing the
loss function:

L (φ) = E
o,a∼πθk

[(
Vφ

(
oi

t

)
−

∑T

t �=t
γ t �−tr i

t �

)2
]
. (5)

All agents execute decentralized policies by using shared
parameters. This method can reduce the computational burden,
speed up training, and enhance stability. One limitation of the
parameter-sharing training approach is that the observation
spaces of all agents must be the same size since there is a
single neural network. If all intersections along an arterial cor-
ridor are homogeneous, the observation spaces of each agent
are the same size. If these intersections are not homogeneous,
this issue can be resolved by “padding” the observations of
agents to a uniform size [28]. We can similarly “pad” the
action spaces to a uniform size, and agents can ignore actions
outside of their “true” action space.

The pseudocode for PS-PPO is illustrated in Algorithm 1,
where L refers to the total number of iterations, K refers
to the maximum number of training epochs, and B refers
to the minibatch size. The policy network and critic network
are initialized first. In the process of collecting training data,
multiple agents interact with the environment to generate
trajectories, which can be used to compute reward-to-go and
advantage estimates. In order to break the correlation between
the data and thus stabilize the training process, we select a
random mini-batch from memory buffer D with all the agent
data. These sampled data are used to calculate the gradient via
Adam [29] to update the policy and the critic networks.

V. PS-PPO FOR ARTERIAL TRAFFIC SIGNAL CONTROL

A. States and Observations
Observation is defined for each agent, which includes the

current phase, phasei
t , the number of vehicles that were “seen”

by camera sensors, vehsi
t , the mean stop delay of vehicles still

within the detection area, wai tingi
t , and the agent index i . So,

the observation is defined as follows:
oi

t =
{

phasei
t , vehsi

t (l) ,wai tingi
t (l), i

}
(6)

where l is each incoming lane at intersection i . In SUMO
simulation software, a laneAreaDetector is used to collect the
observation information on an area along one or multiple lanes.
The global state is defined as the collection of observations at
all intersections:

st =
{

o1
t , o2

t , · · · , oN
t

}
∈ S, (7)

where S is the state space. The observations of all agents need
to be padded to the same size.

Algorithm 1 PS-PPO

1: initialize θold , φ̂ the parameters for policy π and critic V ,
memory buffer D

2: for iteration = 0, 1, 2, · · · L do
3: Initialize state s0
4: for an episode t = 1, 2, · · · , T do
5: Each agent i executes action according to a shared

policy πθold (at |ot , i), then obtain r i
t , oi

t+1
6: end for
7: Collect trajectories for each agent i :

τ i = {
oi

t , ai
t , r i

t

}
, t ∈ [0, · · · , T ]

8: Compute rewards-to-go R̂i
t =

∑T
t �=t γ t �−tr i

t � on
τ i for each agent

9: Compute advantage estimates Âi
t on τ i for each agent

using GAE according to Eq. (1)
10: Store data

{
oi

t , ai
t , R̂i

t , Âi
t

} ∣∣T
t=1 for each agent i ∈ N

into D
11: for epoch k = 1, 2, · · · , K do
12: Shuffle and renumber the data’s order
13: for j = 0, 1, · · · , T

B − 1 do
14: Select B group of data D j :

D j =
{[

oi
t , ai

t , R̂i
t , Âi

t

] ∣∣N
i=1

} ∣∣∣B( j+1)
t=1+B j

15: Adam updates the policy according to Eq. (4),
i.e., θ = arg max

θ
J (θ)

16: Adam updates the critic according to Eq. (5), i.e.,
φ = arg min

φ
L (φ)

17: end for
18: end for
19: Update θold ← θ and φ̂← φ
20: Empty D
21: end for

B. Actions

Although the use of variable-phase sequences in ATSC
can make the policy more flexible, it can cause frequent
changes in the phase sequence and increase the possibility of
traffic conflicts. To improve traffic safety, the proposed method
utilizes a fixed-phase sequence. In MARL-based ATSC, the
most commonly adopted phase sequence is established based
on traditional four-phase sequences comprising split phasing
or lag-lag left-turn phase sequence, as illustrated in Fig. 4.
Under such signal control, it is legal for vehicles to turn
right when safe to do so, regardless of the traffic signal.
In comparison with the traditional split phasing or lag-
lag left-turn signal phases, the lead-lag left-turn phase has
advantages in providing maximum bandwidth and improv-
ing arterial traffic mobility [15]. Therefore, we propose an
optimized sequence based on the dual-ring schema with a
lead-lag left-turn phase to further increase arterial mobility.
Additionally, the protected-only left-turn signal is applied
in the proposed signal control method because most arte-
rial corridors in China have a large number of pedestrian
crossings, and this signal can significantly improve pedestrian
safety [30].
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Fig. 4. Schematic diagram of two types of traditional four-phase sequences.

Fig. 5. Schematic diagram of a lead-lag phase sequence based on a dual-ring
phase.

In the proposed model, φ2 and φ6 are the arterial coordi-
nation control phases. Then, an optimized six-phase sequence
can be set, as shown in Fig. 5. The duration of each phase is
variable but it cycles in the fixed order of A-B-C-D-E-F. Com-
pared with traditional four-phase sequences, the optimized
six-phase sequence can adapt to a variety of traffic flows since
it increases the flexibility to adjust the release time in each
direction. Therefore, each agent has the same action set:

Ai = {0, 1, 2, 3, 4, 5}. (8)

For example, the traffic signal phase at intersection i can
only be switched to the next phase if ai

t = 0, and other options
must extend the duration of the current phase for ai

t seconds.
In addition, considering pedestrian crossing times and drivers’
maximum tolerance times, the minimal green duration tmin is
used (15 seconds) and the maximal value tmax is 60 seconds.
To reduce the dilemma area, the yellow-light time ty is set to
4 seconds.

C. Reward
The main objective of our model is to improve the traffic

efficiency of arterial corridors. A common metric used to
indicate traffic efficiency is the total vehicle travel time.
However, using the total travel time as feedback to the model
may lead to delayed reward, which is unreasonable. Therefore,
we propose a reward function consisting of the sum of the
queue lengths of each incoming lane and the cumulative
stop delay at all intersections. In particular, the possibility of
queue spillback increases as the vehicle density increases on
a lane, so priority should be given to lanes that are about to
overflow or have overflowed. This proposed reward function
can minimize the cumulative stop delay of all vehicles and
avoid traffic congestion at intersections adjacent to one with
spillback.

Vehicles with a speed < vmin are considered to be stopped.
Let queuei

t (l) denote the measured queue length along each
incoming lane lof intersection iat time step t; i.e., the total
number of vehicles with speeds < vmin . Define the vehicle

Fig. 6. Proposed DNN structure of the PS-PPO used in ATSC.

density of a lane as ρi
t (l) = queuei

t (l)
queuemax

, where queue (l)max is
the maximum permissible number of vehicles in lane l. Then,
the reward of each agent i can be defined as:

r i
t = −

∑
i j∈ε,l∈Li j

(
ρi

t (l) · queuei
t (l)+wai t i

t (l)
)
, (9)

where wai t i
t (l) is the average cumulative stop delay of all

vehicles that are still inside the observed area of lane l.

D. DNN Settings

Fig. 6 illustrates the whole network structure of each
agent. The inputs of the actor network consist of the traffic
observations of the local agent. We first concatenate the four
features into a vector and then feed them into three MLP layers
with (128, 64, 32) units and the tanh activations. The output
layer for the actor is to compute the action probability with a
softmax activation function. For the critic, a linear function is
used to compute the value. Good convergence of DNN requires
proper normalization of the collected state data. Therefore, all
states are normalized to the range of [0, 1] to prevent gradient
explosion, and each gradient is capped at 40. To make mini-
batch updating more stable, we normalize the rewards to the
range of [−1, 0].

VI. SIMULATION AND PERFORMANCE

In this section, the Simulation of Urban Mobility (SUMO)
[31] simulator is used to implement and evaluate our ATSC
algorithm in two traffic environments: a 5 × 1 synthetic arte-
rial corridor and a real-world 8-intersection arterial corridor
in Hangzhou city, under time-variant traffic flows. SUMO
supports real-time traffic simulation in large networks. The
TraCI APIs provided in SUMO enable agents to obtain traffic-
state information at intersections and send commands to traffic
signals to change the duration of each phase.

A. Dataset Description

1) Synthetic Arterial Corridor: The first dataset is of a
synthetic arterial corridor consisting of five homogeneous
intersections (5 × 1), as shown in Fig. 7. Each edge has
four lanes. Vehicles can only turn right in the right-most
lane, go straight in the middle two lanes, and turn left in
the left-most lane. The lengths of the rim edges and adjacent
intersection spacing are 600 meters. In order to make a fair
comparison of different methods, it is critical to simulate a
realistic environment. Instead of generating constant traffic
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Fig. 7. Synthetic arterial corridor with five intersections. The middle two
intersections are omitted due to limited space.

TABLE II

TRAFFIC VOLUME IN THE SYNTHETIC ARTERIAL CORRIDOR

Fig. 8. Real-word arterial corridor with eight intersections in Hangzhou.

flows, four groups of time-varying traffic flows were simulated.
FN represents the traffic flow from each northern incoming
edge, with other directions denotes by subscripts S, W, and E.
For each incoming edge, the number of vehicles generated is
as shown in Table II. The turning ratio is fixed at 60% going
straight, 10% turning left, and 30% turning right.

2) Real-World Arterial Corridor: We also conducted exper-
iments on a real-world arterial corridor in Hangzhou, China,
with eight heterogeneous intersections (see Fig. 8, which was
imported from OpenStreetMap). Wenyi Road is located in
the main urban area of Hangzhou, and traffic jams often
occur, especially during the morning and evening peak periods.
Therefore, we selected traffic data from the morning peak
(8:00–8:30) to validate the proposed method and compare it
with existing methods. Traffic flow data was derived from
camera data, including the camera ID, time, and vehicle
information. Due to the low quality of real-world data, we used
the number of vehicles visible in each lane in the video as
the traffic flow for simplification. The traffic statistics for the
morning peak period are shown in Table III. The turning ratio

TABLE III

STATISTICS OF A REAL-WORD ARTERIAL CORRIDOR

was set at fixed values similar to the real-world data, with 30%
turning right, 10% turning left, and 60% going straight.

B. Experimental Settings

1) Traffic Parameters: In the simulation, we set the speed
limit to 16.7 m/s. The maximum acceleration and deceleration
of the vehicles were 2.6 m/s2 and 4.5 m/s2, respectively.
The length of all vehicles was unified to 5 meters, and the
distance between two vehicles was at least 3.5 meters. The
IDM following model provided in SUMO was used to ensure
that vehicles could drive safely on the road. vmin was set to
0.1 m/s.

2) Compared Methods: The performance of the proposed
model was compared with those of two categories of baseline
methods: traditional methods and RL methods. In order to
make a fair comparison, the traditional methods also apply
the lead-lag left-turn phase sequence. The state, action, and
reward definitions of all RL baseline methods were the same,
as defined in Section V.

a) Conventional methods:

• GreenWave (GW) [23]: This is the most common tra-
ditional method used to achieve arterial coordination
control. It can theoretically alleviate congestion on arterial
corridors. It first uses Webster’s theory to calculate the
cycle length of each intersection and then determines the
optimal public cycle length shared by all intersections.
The offset between intersections is equal to the ratio of
the distance between adjacent intersections to the free-
flow speed.

• MaxPressure (MP) [19]: The MP controller is a
network-level adaptive control method that has advan-
tages over other traditional methods. Each intersection
calculates a pressure based on the queues in adjacent
links, then selects the stage with the highest pressure.

• Longest-queue-first (LQF) [47]: This method gives pri-
ority to the direction with the longest queue at each
intersection. At an intersection, the queue length of the
lane determines the traffic release order.

• Maximal-weight-matching (MWM) [48]: This method
can enable a switch to deliver throughput by using a
quantitative differentiation based on queue occupancy or
waiting time. The shortest queue length can obtain the
maximum weight as a reward.

b) RL methods:

• Independent Deep Q-learning (IDQN) [32]: Traffic sig-
nals in a multi-intersection system are controlled by
decentralized RL agents. Specifically, each agent updates
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their own DQN networks independently without the
exchange of information.

• Multi-agent advantage actor critic (MA2C) [11]: This
approach extends IQL ideas to A2C algorithms and
allows adjacent intersections to share traffic information
through limited communication, thus stabilizing training.

3) Model Parameters: For DNN optimization, we use
ADAptive Moment estimation (Adam) [29] as the gradient
optimizer with a learning rate α = 5×10−4. In each iteration,
we collect 3600 samples as two episodes and 1800 steps
as one episode. After training, 10 episodes are simulated
to evaluate the policies. For IPPO and PS-PPO, we set the
clipping parameter ε = 0.3, discounting factor γ = 0.99,
generalized advantage estimate parameterε = 0.97, and the
minibatch size B = 128.

4) Evaluation Metrics: The performance of different meth-
ods is evaluated by the following metrics.
• Reward: Average reward over all evaluation episodes.

The reward function is defined in Eq. (8), which is
always negative. The bigger the reward, the better the
performance of the method.

• Average queue length (veh): average queue length over
time, where the queue length at time step t is the average
number of stop vehicles on all incoming lanes. The
shorter the average queue length, the fewer cars waiting
on all lanes.

• Average travel time (sec): This is calculated by dividing
the cumulative travel time of all vehicles by the number
of vehicles in an episode.

• Average vehicle speed (m/s): This is calculated by divid-
ing the cumulative average speed of all vehicles over one
horizon by the number of vehicles in an episode. A higher
average speed means smoother traffic.

• Throughput efficiency: This refers to the ratio of the
number of vehicles that have arrived to the number of
vehicles that have departed on the horizon. A higher
throughput efficiency means higher traffic efficiency.

• Bandwidth efficiency: The bandwidth efficiency of a
direction is the percent of green duration used for
progression. While bandwidth generally increases with
an increase in cycle length, efficiency may increase,
decrease, or remain constant.

In summary, a higher reward, average vehicle speed, and
throughput efficiency indicate a better performance. A shorter
average travel time and queue length indicate that the traffic
is less jammed.

C. Performance Comparison

1) Convergence Comparison With RL Baseline: Fig. 9
shows the training curves of the four MARL algorithms
applied to a synthetic arterial corridor. Since the reward
function is always negative, maximizing the reward means
minimizing the cumulative queue length and waiting time.
In general, the ideal result of the training curve is convergence
as the agent learns from historical experience. As shown
in Fig. 9, the training curves of all RL baseline algorithms
show an upward trend and then converge. Among them,

Fig. 9. Training curves of each MARL algorithm applied to the synthetic
arterial corridor.

Fig. 10. Training curves of each MARL algorithm applied to the Hangzhou
arterial corridor.

the training curves of IDQN and IPPO have relatively large
fluctuations, but the performance of IDQN is inferior. This
is because the IDQN and IPPO algorithms are similar in that
each agent independently updates its own policy, which makes
the environment non-stationary. Moreover, nonstationarity may
cause slower and less stable training, especially in the IDQN
algorithm, based on experience replay. As expected, MA2C
performs better than IDQN because the neighborhood policy
information is considered by each local agent, which can
reduce the impact of partial observability on convergence
[11]. On the other hand, PS-PPO has the best performance
because it shows the fastest convergence speed, the smoothest
convergence curve, and the highest reward.

On the real-world arterial corridor of Hangzhou, the training
results of the four algorithms are shown in Fig. 10. The
performance gaps between them are even greater than those
on the synthetic arterial corridor because the Hangzhou arterial
corridor is more complicated. Among them, the training curves
of IDQN and IPPO have difficulty in converging. On the
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TABLE IV

PERFORMANCE COMPARISON OF ALL METHODS ON SYNTHETIC AND ARTERIAL CORRIDORS

TABLE V

PERFORMANCE COMPARISON OF ALL METHODS ON REAL (HANGZHOU) ARTERIAL CORRIDORS

contrary, the improved PS-PPO algorithm can still achieve the
fastest convergence and the highest reward, which is stable at
around −821. Compared with the other three MARL methods,
the PS-PPO algorithm can achieve the best performance on
both synthetic and real road networks. The reasons that
PS-PPO performs better than other reinforcement learning
models can be summarized as follows: 1) PS-PPO algorithm
only needs to learn one strategy, which can significantly
reduce the computation and memory burden, thus speeding
up the convergence speed, which will be analyzed in detail in
section VI(F). 2) More centralized learning process can alle-
viate non-stationarity in MARL and allow faster convergence
[28]. Parameter sharing is the most centralized MARL method,
so the theory also explains the experimental performance
variation of the MADRL method: “complete” parameter shar-
ing is better than completely independent single-agent learning
(the most decentralized case). 3) Maximizing the clipped
objective in PS-PPO can achieve better performance than
maximizing the conventional objective in MA3C.

2) Evaluation Results: Table IV and V lists the key per-
formance metrics of different methods, including traditional
and MARL-based methods. PS-PPO outperforms other con-
trol methods in almost all metrics. In the synthetic arterial
corridor, in comparison to MaxPressure, the PS-PPO algorithm
provides a 33.90% shorter average queue length, 11.96% lower
travel time, 13.85% higher average speed, and 3.49% higher
throughput efficiency. The average performance gap between
the PS-PPO algorithm and MaxPressure is even larger in the
real-world scenario than in the synthetic scenario. This larger
performance difference is consistent with the inherent flaw of
MaxPressure, which is that it cannot learn from environmen-
tal feedback. These evaluation results fully demonstrate that

Fig. 11. Average queue length at each timestep of different methods applied
to the synthetic arterial corridor.

PS-PPO is better than the latest traditional and MARL-based
methods in alleviating congestion on arterial corridors.

Fig. 11 plots the average queue length in the synthetic
arterial corridor at each simulation step. It is obvious that
PS-PPO has the best ability to dissolve queues. In a given
simulation period (1800 seconds), the flow increases from
1–1200 seconds and decreases afterward. Compared with other
methods, PS-PPO can achieve faster queue dissolution and,
thus, lower congestion, which indicates that it can learn more
stable and sustainable policies.

D. Impact of Phase Scheme

To demonstrate the effectiveness of using an action defin-
ition with a lead-lag left-turn phase sequence, we compare
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Fig. 12. Training curves of the PS-PPO algorithm using action settings of
lead-lag left-turn phase or the traditional four-phase scheme on the Hangzhou
arterial corridor.

the reward results with a model that uses the four phase
sequence as shown in Fig. 4(b). Except for the action setting,
the agent state definition and reward function are the same
as in the proposed model. As shown in Fig. 12, the training
curves of these two models with different action settings that
are applied to the real-world arterial corridor show similar
trends. However, using the lead-lag left-turn phase sequence
provides a higher reward than the split phasing scheme. It can
obtain a higher reward after the first iteration and at the end
of the training. Compared with the split phasing scheme, the
lead-lag phase sequence has greater flexibility in dealing with
phase sequences and phase durations. This result indicates
that the MARL-based arterial coordinated control system can
greatly improve performance by pre-optimizing the phasing
scheme when using a fixed-phase sequence in the action
setting.

E. Impact of Reward Function

To prove that the defined reward function can effectively
prevent the occurrence of spillback in arterial corridors,
we also compared our model with a variant that uses a reward
function without the vehicle density coefficient ρi

t (l):

r i
t = −

∑
i j∈ε,l∈Li j

(
queuei

t (l)+ wai t i
t (l)

)
(10)

We tested the performance of this variant in the Hangzhou
arterial corridor scenario and obtained the space occupancy
rates on the incoming lanes at all intersections at each
timestep. Fig. 13 plots the density distributions of the space
occupancy rate of the variant and our method. As mentioned
in section VI.B, the length of all vehicles was 5 meters and
the distance between two vehicles was at least 3.5 meters.
Therefore, the maximum space occupancy rate was 0.588.
Fig. 13 shows that after removing the vehicle density coef-
ficient, the space occupancy rate increased to 0.588, and the
density was greater than that of our method (which includes
the vehicle density coefficient) when space occupancy rates

Fig. 13. Density distributions of occupancy rates in incoming lanes at
all intersections in the Hangzhou arterial corridor according to PS-PPO
algorithms with different reward functions.

Fig. 14. Training curves of PS-PPO models with different clipping parameter
ε on Hangzhou real-world arterial corridor.

> 0.079. This result shows that our reward function can avoid
spillback because the occupancy rate is always < 0.588, and
the proposed reward design is effective.

F. Comparison of Surrogate Objectives in PS-PPO

We compare the performance of the surrogate objectives
with several different clipping parameter ε, which is evaluated
on a 8-intersection real-world arterial corridor. When ε = 0,
the surrogate objective Eq. (4) becomes:

J (θ) = E
o,a∼πθk

[li
t (θ) Âi

t ]

Fig. 14 shows the comparison results. Note that the reward
score achieved is the lowest for the setting without clipping,
which is much smaller than the other settings with clipping.
Unexpectedly, when ε = 0.2, the PS-PPO algorithm can obtain
higher reward score on the Hangzhou arterial corridor than the
original setting with ε = 0.3.
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Fig. 15. Training time of four MARL methods for 300 iterations on both
Synthetic and real-world arterial corridor.

G Scalability Comparison: Whether PS-PPO is more scal-
able than other RL-based methods can be analyzed from the
following two aspects:

1) Effectiveness: As shown in the evaluation results in
Table III, and the convergence curves in Fig. 8 and Fig. 10,
the performance of the PS-PPO algorithm consistently out-
performs other RL methods on different scales from the
5-intersection synthetic arterial corridor to the 8-intersection
real-world arterial corridor.

2) Training Time: We assume that the dimension of the state
vector is k, and the number of trunk ports is N. Then the para-
meter quantity of PS-PPO is 124k+124∗68+68∗32+32∗6,
in which everything except k is constant. Therefore, the space
complexity and time complexity of PS-PPO are approximately
equal toO(k). However, the complexity of IDQN, MA2C
and IPPO (without using parameter sharing) is approximately
equal to O(k · N), which is infeasible when the number of
intersections N is very large. We compare the training time of
PS-PPO (total time for 300 iterations) with the corresponding
running times of the other 3 RL methods on arterials with
different numbers of intersections. For a fair comparison, all
methods are evaluated individually on the same computer.
As shown in Fig. 15, PS-PPO takes much less training time
than IDQN, IPPO, and MA2C, which is consistent with the
complexity analysis above. Therefore, PS-PPO can greatly
reduce the computational requirements.

G. Policy Learned by RL Agents

Fig.16 shows the uni-directional phase plan learned by
5 agents that control each intersection on the synthetic arterial
corridor. The x-axis represents time and the y-axis represents
distance (the reference point is the westernmost end of the
arterial corridor). It can be observed that the duration of the
green light at each intersection is constantly changing, which
causes the offset of adjacent intersections to be constantly
changing as well. Fig. 17 is a time-space diagram showing
the trajectories of all vehicles traveling straight from west
to east. The x-axis represents time, the y-axis represents the
position of the vehicle, and the color of the line represents
vehicle speed. The black color in the picture indicates that
the vehicles are waiting in a queue at an intersection. Few

Fig. 16. Uni-directional phase plan learned by agents for the synthetic arterial
corridor.

Fig. 17. Time-space diagram to illustrate the coordination strategy learned
in the synthetic arterial corridor.

vehicles need to wait for the next green light phase to pass
through intersections, and the green light time is rarely wasted.
This result shows that PS-PPO can learn the optimal phase
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split. The first three intersections on the west side have green
waves that can prevent some vehicles from being stopped by
the red light, which means that agents can learn a coordination
policy.

VII. CONCLUSION

This paper focuses on using the PS-PPO algorithm for
arterial traffic signal control under a partially observable sce-
nario. MARL converges slowly under normal circumstances
due to nonstationarity, and parameter sharing during learn-
ing can solve this issue in ATSC. Extensive experiments
on synthetic and real-world arterial corridors show that the
proposed method is effective in alleviating arterial traffic
congestion and is superior to other state-of-the-art traditional
and MARL-based approaches. Specifically, we designed a
more effective action setting using the lead-lag left-turn phase
sequence, which is more suitable for real-world applications
and greatly improves the flexibility of signal control strategies
for agent learning. Moreover, we designed a more comprehen-
sive reward function to prevent overflows between adjacent
intersections within a short distance. Therefore, this paper
has practical significance for the intelligent control of traffic
signals on arterial corridors.

The proposed method has some limitations that should
be addressed before the real-world deployment. First, the
phase sequence was designed manually, while automatic
decision-making by the agent is more desirable. Additionally,
pedestrian and vehicle classification should be considered to
make the proposed method more humanized. Our future work
will focus on tackling these limitations by modifying the
proposed method.
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