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Network-level turning movement counts estimation using traffic controller
event-based data

Peipei Xua , Xiaofeng Lia , Yao-Jan Wua , and Hyunsoo Nohb

aDepartment of Civil and Architectural Engineering and Mechanics, The University of Arizona, Tucson, AZ, USA; bPima Association of
Governments, Tucson, AZ, USA

ABSTRACT
Accurate turning movement counts (TMCs) data collected from regional-wide signalized
intersections is critical to regional transportation planning and simulation modeling. A var-
iety of existing traffic sensors, configured at intersections for traffic detection and signal
control, can generate a large amount of real-time high-resolution event-based data from
traffic controllers but few of these sensors are configured to collect TMC. This paper pro-
poses a methodology for estimating network-level TMC using existing traffic controller
event-based data without installing additional sensors. First, relevant features that can indi-
cate traffic arrival are extracted from existing event-based data, including detector occu-
pancy time, detector-triggered count, and green time duration. With these features, a multi-
output multilayer neural network model is developed to estimate TMC. To further improve
network-level TMC estimation accuracy, intersection infrastructure data and point-of-interest
(POI) data are included as exogenous variables for the proposed model. Ninety-three signal-
ized intersections are chosen from the Pima County region, Arizona, to calibrate and verify
the developed model. The validation results show that the proposed model can accurately
estimate TMC, as indicated by a median Root Mean Square Error (RMSE) of 41 veh/15min,
11 veh/15min, and 12 veh/15min for through movement, left-turn movement, and right-
turn movement volume estimation, respectively. This research provides a new possibility of
utilizing existing data sources to obtain network-level TMC data without additional infra-
structure and labor costs for transportation agencies.
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Introduction

Turning movement counts (TMCs) at signalized inter-
sections are essential inputs needed by transportation
agencies for transportation planning, simulation mod-
eling, and traffic signal timing optimization.
Traditional methods for TMC collection, such as
manual counting, are both labor-intensive and expen-
sive, especially for region-wide traffic data collection
(Li, 2021). As vehicle detection technology has devel-
oped, intelligent sensors such as inductive-loop detec-
tors, video-based sensors, and radar sensors have
begun to be used for automatic traffic volume data
collection. Although these intelligent sensors can auto-
matically collect omnidirectional TMC data 24/7,
regionally purchasing and installing these sensors is
extremely expensive. For transportation agencies with
funding constraints, collecting regional TMC data
using smart sensors is infeasible due to the cost. In
order to cost-effectively obtain TMC data at all

intersections within a region, many practitioners and
researchers have worked on developing indirect meth-
ods of estimating traffic volume or TMC based on
existing data sources to avoid purchasing and instal-
ling expensive sensors.

Among previous relevant studies, traffic volume
estimation could refer to estimating traffic volume on
street segments, or for one movement (such as
through movement) at signalized intersections. In
contrast with traffic volume estimation, TMC estima-
tion needs to quantify the traffic volume for several
movements, i.e., left turn, right turn, and through
movement. One type of TMC estimation method is
the estimation of turning movement proportions
based on available entry and exit traffic counts at
intersections from loop detectors (Ghods and Fu,
2014; Mirchandani et al., 2001; Virkler and Kumar,
1998). The concept of this method is a turning move-
ment proportion matrices estimation conducted by
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minimizing the error between predicted and observed
exit counts or maximizing the likelihood of TMC
observations, based on the traffic flow conservation
law. However, a region-wide implementation of this
method is still challenging because most network
roads do not have loop detectors installed for exit
count collection at intersections.

Multiple emerging data sources have recently
become available in the transportation domain and
have been used for TMC estimation. For example,
Global Position System (GPS) trajectory data is col-
lected from probe vehicles and connected vehicles.
Some studies have proposed methods to estimate
TMC at signalized intersections using the probe
vehicle or connected vehicle data (Zheng and Liu,
2017). Because connected vehicle technology is still
developing, the sample vehicles (e.g., taxi, probe
vehicle, and connected vehicle) only account for a
small fraction of total traffic at some intersections.
This GPS data is insufficient for estimating network-
level TMC and may limit the accuracy of the pro-
posed methods. In a further study (Zhao et al., 2019),
the penetration rate of vehicles with GPS devices was
estimated by using historical stopping positions of
vehicles based on the probability theory to mitigate
the limitation due to insufficient GPS data. However,
the proposed method (Zhao et al., 2019) is still unable
to estimate the right-turn volume, or be applied at an
intersection with shared lanes. Furthermore, existing
GPS data-based methods require a large number of
historical trajectory details in a region for TMC esti-
mation. Using this detailed trajectory information is
difficult for many transportation agencies due to priv-
acy concerns and costs.

Another emerging large-scale data source is the
high-resolution traffic controller event-based data
(hereafter “event-based data”). This data can be easily
obtained by most local transportation agencies
because it is collected by modern signal controllers
(Liu and Ma, 2008; Smaglik et al., 2007). Event-based
data records a dataset containing signal changes,
detector actuation events data, pedestrian-related
events data, communication events, etc. Multiple sys-
tems have been created by university research teams
to collect event-based data from traffic controllers
(Balke et al., 2005; Liu and Ma, 2009), and commer-
cial products, such as the ASC/3 controllers developed
by Econolite#, have been developed to enable agen-
cies to collect region-wide event-based data. These
event-based data were collected and applied to calcu-
late cycle-by-cycle signal performance measures (Day
et al., 2008), which were further used to quantify

traffic signal performance in later studies (Day et al.,
2014, 2010, 2012, 2009). These measures are known as
Automated Traffic Signal Performance Measures
(ATSPMs) and are used to support traffic signal oper-
ations and management. Although ATSPMs can pro-
vide TMC data by configuring lane-by-lane stop-bar
detectors (Day et al., 2014), obtaining accurate TMC
data through ATSPMs is still challenging for agencies
that are using an old detector layout with one detector
covering multiple lanes. In addition to supporting
ATSPM, event-based data has been successfully
applied for solving traditional traffic problems, such
as travel time estimation (Liu et al., 2008), long queue
length estimation (An et al., 2018; Liu et al., 2009),
pedestrian volume estimation (Li et al., 2021; Li and
Wu, 2021), signal control optimization (Day and
Bullock, 2020; Hu and Liu, 2013), and signal timing
evaluation (Li, Weber, et al., 2019). Despite these suc-
cessful applications, the current application of event-
based data for TMC estimation is still limited, espe-
cially for intersections equipped with old detector lay-
outs. A study conducted by Li et al. has used event-
based data to estimate traffic volume based on the
proposed dynamic Hidden Markov Model (Li, Wu,
et al., 2019). However, this proposed method can only
be used for estimating the through movement volume
on roads configured with an advance detector.

It was found that previous research on estimating
TMC using existing data sources is very limited due
to data availability. In comparison with other available
data sources, such as GPS data, event-based data has
the advantages of region-wide coverage and low cost
because most local transportation agencies have con-
figured traffic detectors for actuated signal control.
According to the latest National Traffic Signal Report
Card (National Transportation Operations Coalition,
2012), 73% of U.S. agencies use actuated signal con-
trol. Real-time vehicle detection information and sig-
nal status information from event-based data has been
proven to have a high correlation with traffic condi-
tions and traffic arrival, for example, event-based data
has been successfully used for queue length estimation
(An et al., 2018), classification (Liu and Sun, 2014),
and through movement volume estimation (Li, Wu,
et al., 2019). Because of this, event-based data can be
used as an ideal data source for network-level TMC
estimation. In this study, we proposed a method
focusing on using various information extracted from
event-based data to accurately estimate network-level
TMC at signalized intersections. This proposed
method can be applied to individual signalized inter-
sections in different sizes of road networks, providing
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essential input for most traffic studies including urban
road network planning and modeling.

The rest of the paper is organized as follows: the
problem statement section first explores three issues
of applying event-based data to estimate TMC. After
this, all data sources used in the study are briefly
introduced, followed by a description of the TMC
estimation methodology. Next, the method perform-
ance is evaluated using ground-truth data. The final
section summarized the conclusions and directions for
future research.

Problem statement

In Pima County, Arizona, approximately 80% of sig-
nalized intersections apply an actuated signal control
strategy. At a typical signalized intersection using
actuated signal control, by default, advance detectors
and presence detectors in video-based sensors are
commonly configured for each of the approaches at
an intersection for signal control. The advance detec-
tors are located upstream from the stop bar for the
green time extension, while the presence detectors are
located on the stop bar for vehicle presence detection,
or both (Wu et al., 2010). These two types of default
traffic detectors are usually wired together, and only
used for vehicle actuation detection because control-
lers require vehicle arrival data rather than vehicle
counts. Most signalized intersections in the Pima
County region have a default configuration with
advance detectors and presence detectors without the
traffic data collection module, thus, the existing
vehicle-actuated detectors in video-based sensors are
not capable of collecting TMC data at most intersec-
tions due to the two major issues described in the fol-
lowing paragraph.

Figure 1(a) shows the configuration of the detec-
tion system on a major road approach (westbound

approach) in the Advanced Transportation
Management Systems (ATMS). The advance detector
(illustrated by a horizontal bar) covers two through
lanes and one shared right-turn lane of the westbound
direction. The advance detector is wired-together and
provides a single call to the controller. The presence
detector (illustrated by arrows) is configured on left-
turn lanes. Because advance detectors commonly have
multiple lanes wired together to provide a single call
to the controller, the advance detectors could count
multiple side-by-side vehicles as one vehicle and
therefore underestimate the actual volume. The count
recorded by the advance detectors is also unable to
separate the through and right-turn volume when a
shared right-turn lane exists.

Figure 1(b) shows the configuration of detectors on
a minor road approach (southbound direction), with
presence detectors (illustrated by the shape of arrows)
on all lanes. The presence detector configured on left-
turn lanes is separated from the presence detector
configured on both through lanes and right-turn lanes
because these two presence detectors provide separate
calls to the signal controller. For detectors on the
through lane and right-turn lane, the major road is
configured with the advance detector, while the minor
road is configured with the presence detector. The
same time duration recorded by advance detectors
and presence detectors could refer to different traffic
counts due to the different lengths of these two types
of detectors. Advance detectors are used to detect
moving vehicles, thus, the time duration is most likely
to be the vehicle passing time. The presence detectors
are typically used for detecting stopped vehicles, so
the time duration is most likely to be the vehicle stop-
ping time.

Based on the detection system configuration pre-
sented above, exploiting the event-based data from

Figure 1. Detection system configuration at Speedway Blvd & Mountain Ave in Tucson, Arizona.
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advance and presence detectors to estimate TMC has
the following challenges:

� The detectors configured at signalized intersections
are single-channel detectors covering multiple
lanes. The count recorded by these single-channel
detectors underestimates the actual volume.

� Detector configuration varies with through and
left-turn movements on major and minor roads at
signalized intersections.

� The layouts of intersections in the road network
are inconsistent. For intersections with a shared
left-turn or shared right-turn lane, the detection
information cannot separate the vehicles detected
by single-channel detectors into through vehicles,
left-turning vehicles, or right-turning vehicles.

Data description

The data used in this study is collected from the Pima
County region and consists of three categories: event-
based data, intersection infrastructure data, and POI
data. Each of these three categories will be instrumen-
tal in preparing the dataset to train our proposed
TMC estimation model.

Event-based data

Traffic controller event-based data consists of a series
of events (detector actuation events, signal change
events, pedestrian-related events, controller communi-
cation events, etc.) generated in real-time. The event-
based data used in this study is collected by the
MaxView# system, which is a type of Advanced
Traffic Management System (ATMS) developed by
Intelight Inc. This system can continuously collect
event-based data from traffic controllers, including
detector actuation events, signal change events, pedes-
trian button-push events, etc. Historical event-based
data before 2016 in Pima County haven’t been
archived and stored by the local transportation
agency, thus, the event-based data during the period
of 2016� 2020 are used in this study.

Three types of event datasets, consisting of detector
actuation events, signal change events, and communi-
cation events, are used for TMC estimation, as shown
in Table 1. Detector actuation event data can provide
the start and end times of each detector actuation
triggered by vehicles. The time difference between the
detector off and detector on represents the detector
occupancy time, which can be used to indicate traffic
arrival for each movement. Signal change events
record each signal phase change. Phase green begin-
ning and phase green termination are chosen for
green time interval calculation. The green time inter-
val reflects the maximum number of vehicles that
could pass the intersection. Controller communication
event data indicates the controller’s communication
quality. When a controller loses communication, the
ATMS server has difficulties in collecting event-based
data from the traffic controller, leading to missing
event-based data (An et al., 2017). Thus, the commu-
nication event is used for event-based data quality
control and check before applying event-based data in
the TMC estimation.

Figure 2(a) shows sample data for each of these
three event types. The DeviceId column is the signal
controller ID, referred to as an intersection location.
The EventId column correspondingly represents the
event categories. The Parameter column in detector
actuation events is the detector number associated
with the turning movement. The Parameter column
in signal change events shows the signal phase
sequence number. The Parameter column in commu-
nication events shows the value of each event in the
last period. As shown in Figure 2(b), an even number
is typically associated with through movement, while
odd numbers are typically associated with left-turn
movements as defined in the Signal Timing Manual
(Urbanik et al., 2015).

Infrastructure data

As described in the Problem Statement section, the
detectors configured at signalized intersections are sin-
gle-channel detectors covering multiple lanes, with
variation in detector configuration on major and

Table 1. Description of events used for TMC estimation.
Event categories Event ID Name Description

Detector actuation events 82 Detector On Triggered when vehicles arrive at the detector
81 Detector Off Triggered when vehicles depart the detector

Signal change events 1 Phase Green Beginning Activated when the green time of a traffic signal has begun
7 Phase Green Termination Activated when the green time of a traffic signal is terminated

Controller communication events 500 Total Comm Attempts Total communication attempts of the controller during an interval
501 Failed Comm Attempts Number of failed communication attempts during an interval
502 Percent Comm Loss Percent of the failed communication attempts during an interval
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minor roads. Event-based data from detectors is insuf-
ficient for TMC data estimation, therefore, intersec-
tion infrastructure data including the type of road
(major road or minor road), number of left-turn
lanes, number of shared left-turn lanes, number of
through lanes, number of right-turn lanes, and num-
ber of shared right-turn lanes are introduced in the
proposed method. Intersection infrastructure data is
manually collected from Google Maps in 2020.

POI data

POI data could indicate urban land use context and
economic activities related to traffic attraction and
production. The POI data in this study was collected
from the Pima Association of Governments (PAG)
employment database in which the Google Places API
and sample review were utilized to validate the exist-
ence of business and control data quality (Noh et al.,
2019). The POI data includes 17 categories and 35
subcategories, such as education and business services.
The categorization in the POI data follows the North
American Industry Classification System (NAICS). In
addition to the POI categories, the number of employ-
ees and longitude and latitude coordinates are con-
tained in the dataset. In this study, the counts of
categories and the number of employees are extracted
from raw POI data within a 400m buffer of an inter-
section. The category counts can reflect the diversity

of POI and land use characteristics surrounding inter-
sections, and the scale of each POI category can be
shown by the number of employees per category.
These two parameters are expected to be highly
related to traveler characteristics and traffic patterns
at nearby intersections.

Study intersection selection

The Pima Association of Governments (PAG) con-
ducted a traffic count program to collect TMC data
annually from sample intersections within Pima
County since 1999. Pima County, with a total area of
9,189 square miles and a population of 1.043 million
recorded in 2020 Census, is located in the south-cen-
tral region of Arizona. The TMC data provided by
PAG was an aggregate of 15-min interval TMC data
during peak hours (7:00-9:00 AM, 4:00-6:00 PM).
These data were usually collected by hired consultant
firms using both manual data collection and individ-
ual sensors.

Ninety-three intersections in the Pima County area
were selected as study locations based on the ground-
truth data and event-based data availability, as shown
in Figure 3. Ground-truth data and event-based data
are selected if both data are identified at the same
period and the same location. Then, data from 2016
to 2020 are used in this study to verify and evaluate
the proposed method. On average, each intersection

Figure 2. Sample event-based data collected at intersections.
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has one to four days of data used for method training
and validation. These study intersections are four-leg
signalized intersections with 54% of signals using per-
missive-only left-turn phasing, 36% using protected-
permissive left-turn (PPLT) phasing, and 10% using
protected-only left-turn phasing.

Methodology

In this section, we first describe how to process event-
based data and extract features relevant to TMC esti-
mation. Afterward, a multi-output multi-layer percep-
tron neural network (MLP) model is developed to
estimate TMC based on event-based features and
exogenous features such as POI and intersection infra-
structure data.

Event-based feature extraction and processing

As mentioned in the data description section, event-
based data is much more informative than other data
sources because traffic signal changing event data and
vehicle-detector actuation event data can record the
start time and end time of each detector actuation
triggered by vehicles, reporting a real-time signal
change status. Based on the information provided by
these event-based data, traffic flow-related variables
such as detector occupancy time, detector-triggered
count, and green time duration can be measured and

used to indicate traffic arrival and conditions. In this
section, a procedure for these traffic flow-related vari-
ables extraction is designed to prepare event-based
features for our proposed TMC estimation model.

Event-based feature extraction and processing con-
sist of three steps: communication loss check, event-
based feature calculating, and event-based feature
combination as shown in Figure 4.

Step 1: Communication loss checking. Event-based
data includes a large amount of data but may have some
missing data and outliers due to controller communica-
tion loss. The communication loss issue of traffic control-
lers can lead to the loss of event-based data records. For
example, the detector-actuation event data loss caused by
communication loss could result in an unpaired detector
on and off events, or outliers of duration, leading to a
biased estimation result. Communication loss can be
measured by the event “percentage communication loss
(POCL)” in the communication event dataset recorded
by controllers. The detector actuation event and signal
change event data are removed within the period when
the value of POCL is greater than 0.

Step 2: Event-based feature calculating. Four event-
based features including detector occupancy time,
detector-triggered count, green time duration, and
permissive left-turn green time are extracted in this
step. These features are calculated and aggregated into
15-min intervals because the ground-truth data were
collected in a 15-min interval.

Figure 3. Location of study intersections in Pima County, AZ.
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The detector occupancy time (also called “vehicle
on-detector time”) (Wu and Liu, 2014) can be meas-
ured by the time difference between the detector-off
timestamp and the corresponding detector-on time-
stamp. The detector-off event should be followed by
the detector-on event. All paired detection events
(detector-on and detector-off) are grouped to calculate
the detector occupancy time, and all detector occu-
pancy time is summed up in 15-minute intervals. The
detector-triggered count is referred to as the total
number of times detector-on events occur during a
15-min interval. These two features are formulated as
the following:

odj ið Þ ¼
X
n2N

td, jn, 81 ið Þ � td, jn, 82 ið Þ; j 2 0, 1f g (1)

cdj ið Þ ¼
X
n2N

½Ed, jn ið Þ ¼ 81�; j 2 f0, 1g (2)

where odj ið Þ is the detector occupancy time for
approach i at intersection d; j ¼ 0 indicates that a
detector number is an even number, which is typically
associated with through movements; j ¼ 1 is an odd
number, which is typically associated with left-turn

movements (as shown in Figure 2 (b)) . td, jn, 81 ið Þ,
td, jn, 82 ið Þ are the timestamp of detector-off and time-
stamp of detector-on for approach i at intersection d,
respectively. N is the number of groups of paired
detection events during the 15-min period. cdj ið Þ is the
detector-triggered count for approach i at inter-
section d during the 15-min period. Ed, j

n ið Þ ¼ 81
shows that the detector j for approach i at intersection
d in group n is detector-on.

Signal change events include the real-time green
phase beginning and green phase termination events.
After grouping the paired green phase events based
on signal cycle ID, green time duration for a whole
15-min interval can be calculated through the sum of
the time difference between the phase green beginning
event and phase green termination event of each sig-
nal phase during a 15-min period, as shown in the
following:

gdj ið Þ ¼
X
n2N

td, jn, 7 ið Þ � td, jn, 1 ið Þ; j 2 f0, 1g (3)

where gdj ið Þ is the green time for phase number j
approach i at intersection d during a 15-min interval.

Figure 4. Flowchart of the event-based feature extraction process.
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td, jn, 1 ið Þ, td, jn, 7 ið Þ are the timestamps of phase green
beginning and phase green termination for phase
number j approach i at intersection d, respectively.

Through Equation 3, the green time duration for the
left-turn and through movement can be calculated.
However, only the protected left-turn duration time can
be reflected when calculating the left-turn green time.
For the permissive-only left-turn phasing, the green
time duration is null because no phase parameter is
assigned to the left-turn movement (as shown in Figure
2(b) the minor road). For the protected-permissive left-
turn phase, only the protected-only green time can be
calculated through Equation 3, however, the permissive
parts of green time cannot be directly indicated in the
event-based data. Thus, permissive left-turn green time
is introduced as one input to the model, in addition to
protected green time. The permissive left-turn green
time calculation is formulated as shown in Equation 4.

pd ið Þ ¼

XC
c¼1

gdc, 0 i'
� �

� gdc, 1 i'
� �� �

; Sd i, i'
� �

¼ 1

XC
c¼1

gdc, 0 i'
� �� �

; Sd i, i'
� �

¼ 0

8>>>><
>>>>:

(4)

where pd ið Þ indicates the permissive left-turn green
time for approach i; gdc, 0 i0ð Þ is opposing through
movement green time at cycle c; gdc, 1 i0ð Þ is the oppos-
ing left-turn protected green time at cycle c; Sd i, i0ð Þ ¼
0 is used to designate that the signal of two opposing
approaches is operated concurrently; and Sd i, i0ð Þ ¼ 1
is used to designate that the signal of two opposing
approaches is operated separately.

Step 3: Combining all the event-based features.
This step aims to obtain the event-based feature vec-
tor by matching these event-based features based on
the intersection approach and the time period. On
each approach, the event-based feature vector should
have seven elements, as shown in Equation 5.

Xd
E ið Þ ¼ fod0 ið Þ, od1 ið Þ, cd0 ið Þ, cd1 ið Þ, gd0 ið Þ, gd1 ið Þ, pd ið Þg

(5)

where Xd
E ið Þ indicates the event-based feature vector

for approach i at intersection d, including seven ele-
ments, which can be measured based on step 2.

After extracting and calculating the event-based
feature dataset, the dataset requires further cleaning
because missing values may exist in this vector due to
data quality issues or different types of left-
turn phasing.

Multi-layer perceptron neural network model

As described in the Problem Statement section, three
major challenges need to be resolved for estimating
TMC when using event-based data. The challenges
caused by single-channel detectors covering multiple
lanes and different types of detector configurations
on different approaches result in complex uncertain-
ties and scenarios to estimate TMC. To capture the
non-linear and uncertain relationship between event-
based data and TMC, a Multi-Layer Perceptron
(MLP) Neural Network model is introduced. The
MLP model is a class of fully connected feedforward
artificial neural networks that can capture underlying
relationships expressed in the problem without the
need for prior assumptions (Zhang et al., 1998). The
MLP model has been successfully used for segment
traffic volume and annual average daily volume
(AADT) estimation (Gastaldi et al., 2014; Sekuła
et al., 2018). The developed MLP model used in this
study includes four layers: the input layer, two hid-
den layers, the output layer, and the model structure,
as is shown in Figure 5. Every node in a layer con-
nects to each node in the following layer, making a
fully connected network. The left layer is the input
layer, which consists of a set of neurons representing

Figure 5. The topology of the MLP model for TMC estimation.
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the input variables. The input layer is formulated
using Equation 6.

Xd ið Þ ¼
Xd
E ið Þ

Xd
I ið Þ

Xd
P ið Þ

2
64

3
75 (6)

In Equation 6, Xd ið Þ is the input layer vectors for
approach i at intersection d; Xd

E ið Þ is the event-based
feature vector; Xd

I ið Þ is the vector consisting of fea-
tures from intersection infrastructure data; and Xd

P ið Þ
is the vector consisting of features from POI data.

Xd
E ið Þ ¼

od0 ið Þ
od1 ið Þ
cd0 ið Þ
cd1 ið Þ
gd0 ið Þ
gd1 ið Þ
pd ið Þ

2
6666666664

3
7777777775
,Xd

I ið Þ ¼

md ið Þ
ndl ið Þ
ndls ið Þ
ndth ið Þ
ndr ið Þ
ndrs ið Þ

2
66666664

3
77777775

(7)

In Equation 7, Xd
E ið Þ consists of od0 ið Þ,

od1 ið Þ, cd0 ið Þ, cd1 ið Þ, gd0 ið Þ, gd1 ið Þ, pd ið Þ, and the defin-
ition and calculation methods are based on Equation
1 through Equation 5. In the vector Xd

I ið Þ, md ið Þ is
the road type at intersection d; ndl ið Þ, ndls ið Þ,
ndth ið Þ, ndr ið Þ, ndrs ið Þ represent the number of the dedi-
cated left-turn lane, shared-left turn lane, through
lane, dedicated right-turn lane, and shared right-turn
lane for approach i at intersection d:

Each neuron in the hidden layer transforms the
values from the previous layer with a weighted linear
summation followed by a non-linear activation func-
tion. The mathematical expression of the MLP model
is represented in Equation 8.

zðqþ1Þ
k ¼ f ðwðqþ1Þ

k � zðqÞ þ bðqþ1Þ
k Þ (8)

where zðqþ1Þ
k represents the output from k th neuron

in layer qþ1. f ðÞ is an activation function that is used
to capture nonlinear relationships; wðqþ1Þ

k denotes the
vector of weights between the k th neuron of q layer
and qþ1 layer; bqþ1

k is the bias associated with k th

neuron of the qþ1 layer; z qð Þ denotes the output vec-
tor from the neurons in layer q:

Accordingly, zð0Þ is the input layer vector; zð1Þ, zð2Þ

are vectors of two hidden layers; zð3Þ is the vector of
the output layer. The output can also be represented
as Equation 9.

Zð3Þ ¼
ydL ið Þ
ydT ið Þ
ydR ið Þ

2
64

3
75 ¼

f
Xn
s¼1

ws, L
ð2Þzsð2Þ þ bð3ÞL

 !

f
Xn
s¼1

ws,T
ð2Þzsð2Þ þ bð3ÞT

 !

f
Xn
s¼1

ws,R
ð2Þzsð2Þ þ bð3ÞR

 !

2
66666666664

3
77777777775
(9)

Where Zð3Þ is the vector of the output layer, con-
sisting of three neurons. ydL ið Þ, ydT ið Þ and ydR ið Þ
represent the left-turn volume, through movement
volume, and right-turn volume on approach i at inter-
section d, respectively. zsð2Þ represents the output
value of s th neuron in layer 2:
ws, L

ð2Þ, ws,T
ð2Þ, ws,R

ð2Þ represent the weight value
between the sth neuron of layer 2 and the left-turn
neuron, through movement neuron and right-turn
neuron of the output layer, respectively.
bð3ÞL , bð3ÞT , bð3ÞR are the bias for left-turn, through
movement, and right-turn of the output layer,
respectively.

Implementation and results

Event-based feature analysis

Based on the proposed event-based feature extraction
and processing framework, we obtained the event-
based features from ninety-three study intersections in
the Pima County region. Because the detector config-
uration on major roads and minor roads at intersec-
tions are inconsistent, we examined the distribution of
detector occupancy time and detector-triggered count
over these ninety-three intersections to further learn
about the event-based feature differences between
major roads and minor roads. The results are sum-
marized in Tables 2 and 3. The maximum detector
occupancy time is consistently 900 seconds, indicating
the detector is fully occupied by vehicles during a 15-
minute interval. The detector occupancy time on
minor roads is higher than that of major roads. The
detector-triggered count for the through movement
on major roads is significantly greater than others.
This outcome can be explained by the fact that the
through movement on a major road is equipped with

Table 2. Descriptive statistics of detector occupancy time dur-
ing 15-min intervals.

Detector occupancy
time (seconds)

Major road Minor road

Left-turn Through Left-turn Through

Mean 468 445 526 590
SD 241 189 208 196
Minimum 2.9 17 0.1 12
25% Percentile 270 304 389 463
Median 458 431 538 621
75% Percentile 672 580 680 740
Maximum 900 900 900 900

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 9



advance detectors that are more sensitive to the short
gaps between two vehicle groups than presence detec-
tors. A higher volume of through movement on major
roads can also lead to a higher detector-triggered
count than other movements.

Hyperparameter determination

The dataset used for the evaluation study is collected
from ninety-three signalized intersections (refer to
Figure 3 for study intersections). Each data entry cor-
responds to the number of 15-min interval TMC dur-
ing peak hours (7:00-9:00 AM, 4:00-6:00 PM) on an
approach of an intersection. The dataset is divided
into training (80%) and testing (20%) by intersection.
The training data has 45% of data from AM peak
hours and 55% of data from PM peak hours. The test-
ing data has 42% of data from AM peak hours and
58% of data from PM peak hours. Due to the

communication loss of controllers during some peri-
ods, more ground-truth data from PM peak hours is
used after overlapping with event-based data.

Before training the MLP model, the optimal num-
ber of neurons for each hidden layer has to be deter-
mined. A sensitivity analysis experiment is carried out
to select the optimum number of hidden neurons,
with the number of neurons in each layer increasing
from 10 to 100 in 10 neurons increments. The per-
formance, in terms of Root Mean Square Error
(RMSE), is chosen as the error indicator in the num-
ber of neurons sensitivity analysis. Figure 6 shows the
best performance of the model is achieved when 60
neurons are in hidden layer 1 and 40 neurons are in
hidden layer 2. When the number of neurons is
greater than 40 neurons, the decrease in the RMSE is
not significant. After determining the number of neu-
rons, the activation function and optimizer parameters
are then selected based on the model performance.
Based on the results, the MLP model using the
Rectified Linear Unit (ReLu) for activation function
and a quasi-Newton method L-BFGS (Byrd et al.,
1995) as an optimizer is found to outperform with
faster convergence.

Model performance analysis

The four indicators used to evaluate and quantify the
MLP model performance, including Root Mean
Square Error (RMSE), Mean Absolute Error (MAE),

Figure 6. Model performance using different numbers of neurons.

Table 3. Descriptive statistics of the detector-triggered count
during 15-min intervals.

Detector-triggered
count

Major road Minor road

Left turn Through Left turn Through

Mean 12 87 9 20
SD 12 35 4 9
Minimum 1 3 0 1
25% Percentile 7 65 7 13
Median 10 84 9 18
75% Percentile 13 105 11 24
Maximum 179 469 33 100
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statistic R-Squared, and Mean Absolute Percentage
Error (MAPE) which is calculated after removing data
with ground-truth data values of zero if applicable,
are defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðQGr
i � QEs

i Þ2
n

s
(10)

R2 ¼ 1�
Pn

i¼1 ðQGt
i � QEs

i Þ2Pn
i¼1 ðQGt

i � QGt Þ2 (11)

MAE ¼
Xn
i¼1

QGr
i � QEs

i

�� �� (12)

MAPE ¼ 1
n

Xn
i¼1

QGr
i � QEs

i

QGr
i

����
���� (13)

where QGr
i is the ground-truth TMC; QEs

i is the esti-
mated TMC; QGt is the mean of ground-truth TMC;
and n is the number of samples for verification.

To avoid under-fitting and over-fitting during
model training with a limited training dataset, 5-fold
cross-validation is used to test the effectiveness of the
proposed model. This dataset is split into five groups
by intersection, each four dataset groups are used for
model training, and the fifth dataset group is used for
model testing to evaluate the model performance on
the dataset not used in the training process. Table 4
shows that the standard deviation of each indicator
for different movements is always low, demonstrating
that the MLP model has a robust performance using
the different unseen datasets. The R-squared for
through movement ranges from 0.76 to 0.85, and for
left-turn movement range from 0.56 to 0.67. The
right-turn movement has a slightly lower R-squared of
0.20 to 0.40. The results show the performance of the
proposed model is robust during model training and
the proposed model can be used for accurately esti-
mating TMC at signalized intersections.

Figure 7 shows the model performance using differ-
ent measures by intersection. The median RMSEs of the
left-turn, through and right-turn volume estimation is
11 veh/15min, 41 veh/15min, and 12 veh/15min,
respectively. The median MAEs of left-turn, through
movement, and right-turn volume estimation are 9 veh/

15min, 33 veh/15min, and 10 veh/15min, respectively.
RMSEs and MAEs of through movement are higher
than that of the left-turn and right-turn movements
because the average traffic volume of through movement
is relatively higher than the other two movements at
most intersections. The median R-squared of the left
turn, through movement, and right-turn movement is
0.48, 0.73, and 0.16, respectively. The median MAPEs of
the left turn, through movement, and right-turn move-
ment are 30%, 23%, and 39%, respectively. According to
R-squared and MAPE, the TMC estimation of through
movement yields the best performance among these
three movements, likely because of the higher volume of
through movement. Another reason for this high per-
formance is the configuration of advance detectors on
the major corridor through lanes, which is more sensi-
tive to vehicle arrival than presence detectors on left-
turn lanes. Also, right-turn vehicles may turn right at
any time with a safe gap, regardless of the red light.
Therefore, the number of right-turn vehicles is more dif-
ficult to accurately indicate using signal events. The left-
turn movement count estimation slightly outperformed
the right-turn movement, probably because some
advance detectors and presence detectors configurations
do not extend to right-turn lanes. A lack of right-turn
event-based information is a probable cause of the lower
R-squared value of the right-turn volume estimation.

To evaluate model performance at different inter-
sections with different left-turn signal phases and
intersection layouts, the model accuracy is investigated
under different scenarios and summarized in Table 5.
Table 5 shows that the model performances under dif-
ferent scenarios are relatively consistent, indicating
the proposed model is reliable for accurately estimat-
ing TMC at most signalized intersections with varying
characteristics. The intersections with permissive-only
left-turn signal phases have a higher MAPE of esti-
mated left-turn and right volume, possibly due to the
lower volume at these intersections. Similarly, inter-
sections with shared left-turn lanes may have a higher
error of estimated through and right-turn volume,
because two study intersections (River Rd & Campbell
Ave (NB), Swan Rd & Camp Lowell Dr (EB) at
Tucson, AZ) have higher error caused by one

Table 4. Performance measures for MLP-based TMC estimation.

5-Fold

RMSE (veh/15min) MAPE R2 MAE (veh/15min)

T L R T L R T L R T L R

1 47 15 22 38% 38% 63% 0.82 0.58 0.20 35 11 15
2 43 20 18 32% 51% 67% 0.83 0.67 0.34 30 12 13
3 48 14 29 38% 43% 52% 0.85 0.58 0.23 33 10 17
4 47 14 18 30% 40% 53% 0.80 0.56 0.32 33 10 12
5 61 17 19 33% 49% 62% 0.76 0.63 0.25 41 12 13

T: through movement; L: left-turn movement; R: right-turn movement.
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exclusive left-turn lane and one shared left-turn lane.
This lane configuration cannot be captured well by
the model, due to limited samples. In addition, the
left-turn volume estimation error is less accurate on
two left-turn lanes because of the dual left-turn lane
configuration for a few study intersections, and this
characteristic is not fully captured by the train-
ing model.

Sensitivity analysis of input information

The input data for the developed MLP model includes
event-based features, infrastructure features, and POI
information features. To analyze the effects of the
input information on model performance, three types
of MLPs with different input information are
constructed.

Figure 7. MLP-based model evaluation for three movements using the measures of (a) MAE, (b) RMSE, (c) R-squared, and
(d) MAPE.

Table 5. Performance measure comparison under different scenarios.

Scenario

MAE (veh/15min) MAPE

LT TH RT LT TH RT

LT signal phase PPLT 10 39 11 35% 30% 40%
Permissive only LT 9 25 15 40% 32% 50%
Protected only LT 12 40 17 28% 29% 30%

LT lane type Exclusive LT 10 36 12 35% 31% 43%
Shared LT 13 23 20 34% 80% 59%

RT lane type Exclusive RT 12 38 14 36% 38% 45%
Shared RT 8 35 12 33% 26% 42%

Number of TH lanes 1 10 11 18 38% 38% 52%
2 10 31 12 35% 31% 44%
3 9 61 11 33% 28% 36%

Number of LT lanes 1 9 35 12 34% 31% 43%
2 18 40 16 41% 39% 45%

TH: through movement; LT: left-turn movement; RT: right-turn movement; PPLT: protected-permissive left-turn.
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Model 0 is the proposed model with all input informa-
tion and three output layers. Model 1 is an MLP-based
model without infrastructure data. Model 2 is an MLP-
based model without the POI information. Model 3 con-
sists of two single-output MLP models to estimate through
and left-turn volume, respectively. Two MLP models in
Model 3, one uses the event-based data associated with
through movement (i.e. occupancy time of the through
movement detector, triggered count of the through move-
ment detector, the green time duration of the through
movement signal), infrastructure information, and POI
information to estimate through movement volume. The
other model uses the event-based data associated with left-
turn movement (i.e. occupancy time of the left-turn move-
ment detector, triggered count of the left-turn movement
detector, and green time duration of the left-turn move-
ment signal), as well as infrastructure and POI informa-
tion to estimate the left-turn movement volume.

These models’ performance for estimating 15-min
TMC is evaluated and compared by using 10-fold cross-
validation. Figure 8 visualizes both the median and vari-
ation of the MAPE of different models. The horizontal
axis represents the movement at intersections. The
MAPE of Model 0 is significantly lower than Model 1 in
right-turn, left-turn, and through volume estimation,
indicating that infrastructure information has a signifi-
cant influence on the performance of the proposed
model. Model 2 has a higher error than the proposed
method in left-turn and right-turn volume estimation,
and similar performance of through movement volume
estimation. One possible explanation for this result is
the impact POI data has on left-turn and right-turn vol-
ume, as most turning vehicles are going to nearby stores
and thus lessening through volume. The proposed
method slightly overperforms Model 3 in estimating
left-turn and through volume, however, because Model
3 is unable to estimate right-turn volume or be applied
at intersections with a shared left-turn lane. The interac-
tions between left-turn and through-movement associ-
ated variables can slightly improve the model

performance as well as estimate right-turn volume. The
MAPE variation of Model 0 using different datasets is
lower than the other three models, showing the reliabil-
ity and robustness of the proposed method.

Conclusions

TMC data is critical for transportation planning,
simulation modeling, and traffic signal timing opti-
mization. Due to most intersections’ lack of sensors
configured for direct TMC collection, the region-wide
TMC data collection process is challenging and time-
consuming when using a manual collection method.
The existing TMC estimation methods are difficult for
region-wide implementation due to data availability
and budget limit. This paper proposed a framework of
event-based data processing and features extraction
and developed an MLP-based approach for estimating
15-min interval TMC at signalized intersections using
existing event-based data. Because event-based data is
collected from existing traffic controllers, the data is
wide-coverage and low-cost for use. The proposed
method can benefit transportation agencies by provid-
ing a method to cost-effectively obtain region-wide
TMC data. Three types of event-based features are
extracted for use as crucial variables of MLP model
inputs in this study, including vehicle occupancy time,
detector-triggered count, and green time duration. To
improve the TMC estimation accuracy for signalized
intersections with different layouts, infrastructure data
and POI data are included as exogenous variables for
the MLP model. The developed MLP model is a
multi-output neural network that can estimate left-
turn, through movement, and right-turn volume for
each approach at a signalized intersection. The ground-
truth data is collected from ninety-three signalized inter-
sections in the Pima County region, Arizona, and is used
for model calibration and verification. The validation
results yield a median RMSE of 41 veh/15min, 11 veh/
15min, and 12 veh/15min for through movement, left-

Figure 8. Influence of different input information on the MLP-based model performance using MAPE measures.
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turn movement, and right-turn movement volume estima-
tion, respectively. These evaluation results indicate that the
proposed MLP model can estimate TMC, showing that
this research can benefit transportation agencies by ena-
bling them to obtain region-level TMC through existing
data sources, avoiding additional infrastructure and
labor costs.

Although only the ground-truth data during peak
hours is used to calibrate and verify the proposed
method, this method can also be applied to estimate
TMC during off-peak periods because event-based
data can provide real-time information at any time of
the day. Due to a lack of detectors configured on
right-turn lanes at some intersections, information of
the right-turn movement vehicles is difficult to obtain,
causing the lower accuracy of right-turn volume esti-
mation. Adding more features to the proposed model
could be a potential solution to improving the accur-
acy of right-turn volume estimation. Evaluation results
using MAPE show that left-turn and right-turn vol-
ume estimation has a high error because of typical
low volume on left-turn and right-turn lanes.
However, the TMC data provided by the proposed
method has wide coverage and low cost, and the 15-
min TMC could be aggregated into daily, monthly,
and yearly volume data to yield more meaningful
information to support most traffic studies.

Besides, some agencies may not have collected
event-based data, one research direction is to use
static variables, such as POI and infrastructure data,
to estimate the average TMC at intersections. In the
future, more ground-truth data will be collected from
more sample locations to evaluate the feasibility of
only using static variables to estimate the average
TMC, such as annual average daily TMC. The pro-
posed method will be further evaluated with data col-
lected by intelligent sensors in the future. Regardless
of the above-mentioned limitations, this paper pro-
posed a method to estimate TMC data using existing
data sources, saving time and funding.
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