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Influential factors of pedestrian and bicycle crashes 
near Pedestrian Hybrid Beacons: Observing trends 
through an applied analysis

Xi Zhang, Alyssa Ryan, and Yao-Jan Wu 

Civil Engineering, Department of Civil and Architectural Engineering and Mechanics, University of 
Arizona, Tucson, Arizona, USA 

ABSTRACT 
Pedestrian Hybrid Beacons (PHBs) facilitate safe pedestrian 
crossings at marked crosswalks in unsignalized locations. 
However, few studies have recognized situations in which 
individuals may cross roads without PHB activation, potentially 
raising safety concerns. The influential factors contributing to 
pedestrian and bicycle crashes near PHBs remain insufficiently 
investigated. This study identifies characteristics of pedestrians 
and bicyclists prone to crossing without PHB activation. 
Additionally, this study uncovers differences between crash- 
prone and non-crash-prone PHB locations. Furthermore, this 
investigation examines the diverse factors that impact pedes-
trian and bicycle crashes in proximity to activated PHBs and 
accessible PHBs in Tucson, Arizona. Descriptive analysis and 
Bayesian multilevel Poisson-Lognormal regressions are con-
ducted. Results indicate that young individuals (minimum age 
13 and median age 29) and males were more likely to cross 
when PHBs were not activated. Moreover, the odds of pedes-
trian and bicycle crashes near PHBs increased when approach 
speeds decreased 5 to 10 minutes before crashes and at night 
(even with activated PHBs), while they decreased in regions 
with a greater proportion of non-White individuals and higher 
household incomes. These findings provide insights for trans-
portation agencies, enabling them to implement targeted 
education and supplementary traffic control strategies to 
improve pedestrian and bicycle safety near PHBs.

KEYWORDS 
Pedestrian Hybrid Beacon; 
pedestrian and bicycle 
crash; event-based data; 
Bayesian Multilevel Poisson- 
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influential factors   

1. Introduction

Walking and bicycling have been promoted by public agencies as they are 
environmentally sustainable and physically and mentally beneficial (APHA 
et al., 2018; Giles-Corti et al., 2016). According to data from the National 
Household Transportation Survey, walking comprised 10.5% of trips and 
bicycling accounted for 1% in 2017 in the US (McGuckin & Fucci, 2018). 
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Notably, pedestrians and bicyclists are more vulnerable than other travelers, 
e.g., drivers, because they have less protection (Behnood & Mannering, 
2016). In 2021, the National Highway Traffic Safety Administration 
(NHTSA) reported that pedestrian fatalities in the US increased by 13% to 
7,388 fatalities in one year, while bicyclist fatalities rose by 2% to 966 fatal-
ities in one year (Stewart, 2023).

To enhance the safety of pedestrians and bicyclists, previous studies have 
examined factors impacting the frequency (Amoh-Gyimah et al., 2016; 
Cheng et al., 2018; Haddad et al., 2023; Zhu et al., 2023) and severity 
(Hussain et al., 2019; Paudel et al., 2022; Sun et al., 2019; Zamani et al., 
2021) of pedestrian and bicycle crashes at signalized intersections and on 
arterials. However, there have been limited studies investigating pedestrian 
and bicyclist safety at or near Pedestrian Hybrid Beacons (PHBs). PHBs, 
formerly known as High-Intensity Activated CrossWalK (HAWK) signals, 
are used to warn and control traffic at unsignalized locations to assist 
pedestrians in safely crossing streets or highways at marked crosswalks 
(MUTCD, 2009). Several US states, including Georgia, Minnesota, Florida, 
Michigan, Virginia, Alaska, Delaware, North Carolina, and Kansas, have 
implemented PHBs since their original installation in Tucson, Arizona 
(Chalmers, 2010; Pulugurtha et al., 2018).

PHBs, as shown in Figure 1, comprise of a circular yellow signal indica-
tion at the center, with two horizontally aligned circular red signal indica-
tions above. The vehicular display faces of PHBs are usually positioned on 
mast arms over the main approaches. When not activated by a pedestrian, 
the PHB indications remain dark. Upon pedestrian actuation, the PHB dis-
plays a flashing circular yellow signal, followed by a steady circular yellow 
signal to alert drivers to prepare for a pedestrian crossing. At that time, 
both steady circular red signals are activated during the pedestrian walk 
interval. Following, alternating flashing circular red signals are displayed 

Figure 1. Pedestrian Hybrid Beacon installed in Tucson, Arizona (photo by Xi Zhang).
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during the pedestrian clearance interval, functioning similarly to a stop 
sign. Once the pedestrian clearance interval concludes, the PHB signals 
return to a dark state (MUTCD, 2009).

Several studies have assessed motorist compliance and the safety effect-
iveness of PHBs. Fitzpatrick et al. evaluated yielding rates for staged pedes-
trians and the general population at five PHB locations in Tucson, Arizona. 
The staged pedestrian crossings were conducted in 2003 for this study, 
while the video recordings were reviewed in 2004. The results showed 
yielding rates were between 94% to 100% for staged pedestrians and 98% 
to 100% for the general population (Fitzpatrick et al., 2006). In an 
expanded study at 20 PHB locations, data was collected in 2014 for Austin, 
Texas, at eight sites and in 2015 for Tucson, Arizona, at 12 sites. Tucson, 
Arizona, exhibited an average yielding rate of 97% for the general popula-
tion, whereas Austin, Texas, showed a yielding rate of 94% (Fitzpatrick 
et al., 2016). Other studies have also indicated that drivers tend to yield to 
pedestrians and bicycles at activated PHBs in the last decade and a half of 
research (Arhin & Noel, 2010; Fitzpatrick et al., 2014). Thus, it has been 
shown that activating PHBs before crossing roads could enhance the safety 
of pedestrians and bicyclists while crossing, highlighting the need to 
increase the appropriate usage of PHBs in locations where they are 
installed. Effective educational programs have been shown to potentially 
encourage the proper use of PHBs (Godavarthy & Russell, 2016; Hunter- 
Zaworski & Mueller, 2012), and the activation rate of PHBs reached up to 
91% at 20 PHB locations (Fitzpatrick et al., 2016) in cases when the general 
public was well-educated and used to PHBs. Of note, it is potentially worth 
further increasing the activation rate of PHBs as safety for pedestrians and 
bicyclists could be increased accordingly.

Educational campaigns have the potential to increase the activation rate of 
PHBs. However, certain general educational campaigns focused on road 
safety have not yielded conclusive evidence of improved traffic safety 
(Hoekstra & Wegman, 2011). This may be attributed to their potential defi-
ciency in setting strategic, measurable, achievable, realistic, and time-bound 
objectives (Bayne et al., 2020). Moreover, public awareness campaigns 
incurred exorbitant costs (Active Trans, 2016). Therefore, rather than focus-
ing solely on educating the general public in cities with relatively high activa-
tion rates, it may be more beneficial to target specific groups, such as 
different genders and age groups, who are more likely to cross when PHBs 
are not activated. Tailored educational resources for these specific demo-
graphic groups may yield more effective results (Boslaugh et al., 2005). 
However, few studies have identified these specific groups mentioned above.

In terms of safety study at PHBs, Eapen evaluated the safety effectiveness 
of PHBs from 2012 to 2013 at one location in Las Vegas, Nevada. 
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Evaluation of the observations generally concluded that PHBs improved 
pedestrian safety after installation and continued benefiting pedestrian 
safety one year later (Eapen, 2014). The assessment carried out in this 
study was restricted due to the limited number of study locations. To per-
form a more rigorous evaluation of the safety effectiveness of PHBs, 
Fitzpatrick et al. conducted an Empirical Bayes before-after study in 
Tucson, Arizona, using six-year crash data (ranging from 1999 to 2007, 
depending on the installation date) collected at 21 PHB locations. The 
evaluation results indicated that total crashes and pedestrian crashes 
decreased by 29% and 69%, respectively. Severe crashes also showed a 15% 
reduction, but it was not statistically significant (Fitzpatrick & Park, 2010).

Aside from conducting before-after studies, several studies have also 
identified the influential factors contributing to pedestrian and bicycle 
crashes at PHB locations. Pulugurtha et al. utilized Pearson correlation tests 
to examine the association between the number of all crashes and predic-
tors, such as demographic and on-network characteristics, at 13 PHB loca-
tions in Charlotte, North Carolina. Crash data was collected from 2011 to 
2014. The findings concluded that high traffic volume, high speed, wide 
roads, near office, multi-family, retail, and vertical mixed land-use areas 
would result in a rise in the number of all crashes (Pulugurtha et al., 2018). 
However, the correlation test used in the study cannot precisely determine 
the extent of a predictor’s impact on the number of crashes. Fitzpatrick 
et al. conducted a cross-sectional study analyzing 186 PHB locations in 
Arizona. Crash data was collected from 2007 to 2017. They found that an 
increase in the number of lanes and a shorter distance between traffic con-
trol signals and PHBs increased the number of crashes. Conversely, the 
presence of a bike lane, a raised median, and a pedestrian refuge island 
reduced the total number of crashes (Fitzpatrick et al., 2021). Nevertheless, 
none of these studies thoroughly examined the influential factors contribu-
ting to pedestrian and bicycle crashes near PHB locations, particularly 
when PHBs were activated, but pedestrians and bicyclists were involved in 
crashes. Further, the transportation field has observed a change in driver 
behavior since the 2020 COVID-19 pandemic, resulting in higher speeding 
rates (NHTSA, 2022a), among other violations. This change in behavior 
has not been accounted for in any PHB study to date.

When evaluating the influential factors of crashes, generalized linear 
models, such as Poisson models and negative binomial models, may not 
adequately account for unobserved heterogeneity existing in predictors, 
such as traffic conditions, roadway characteristics, and human elements 
(Huang & Abdel-Aty, 2010; Mannering et al., 2016; Xie et al., 2013). 
Unobserved heterogeneity describes the existence of unmeasured differen-
ces between crashes that are associated with predictors of interest. Failing 
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to consider unobserved heterogeneity in predictors may result in a biased 
and inefficient estimation of model parameters (Mannering et al., 2016). 
Several studies have utilized Bayesian multilevel models to address potential 
heterogeneity in predictors (Cheng et al., 2018; Huang & Abdel-Aty, 2010; 
Wang et al., 2015; Xie et al., 2013). Bayesian multilevel models provide out-
standing explanatory power and can effectively estimate the multilevel 
structure of data by incorporating predictors (Gelman & Hill, 2006; Xie 
et al., 2013). Moreover, the effects of predictors can also be independently 
examined by including predictors at different levels (Gelman & Hill, 2006). 
However, there is a lack of research applying Bayesian multilevel models to 
examine the influential factors of pedestrian and bicycle crashes near PHB 
locations.

To address the aforementioned research gaps, this study aims to achieve 
the following three objectives: 1) identify circumstances in which people 
tended to cross roads when PHBs were not activated and subsequently 
experienced crashes, targeting specific groups for education and awareness 
efforts, and 2) analyze varying crash frequencies near different PHB loca-
tions to understand differences. An observation from this study is that cer-
tain PHB locations had pedestrian and bicycle crashes reported from 2018 
to 2021 while others had not. In this study, PHB locations with reported 
pedestrian and bicycle crashes are labeled crash-prone, while those without 
such reported crashes are termed non-crash-prone. Finally, the last object-
ive (3) is to investigate factors contributing to pedestrian and bicycle 
crashes near activated PHBs during road crossings and all available PHBs 
in this study to assist in developing policies and research topics that can 
lead to better safety near PHB locations.

Descriptive and statistical analyses are conducted in this study to assist 
in facilitating the accomplishment of the three objectives. The descriptive 
analysis visually examines situations, including demographic factors and 
traffic conditions, in which people tend to cross roads without activated 
PHBs and experience crashes. It also observes characteristics of crash-prone 
and non-crash-prone PHB locations. The statistical analysis provides 
insight into the degree to which a specific predictor affects the number of 
pedestrian and bicycle crashes near activated and all PHB locations. 
Multilevel Poisson-Lognormal regression models incorporated into a full 
Bayesian framework are utilized to carry out the statistical analysis. The 
models are estimated at both intersection and individual levels. In addition, 
various influential factors, such as traffic conditions (i.e., approach speed 
and approach speed standard deviation), population density, the proportion 
of White individuals, household income, and lighting conditions, are eval-
uated. Moreover, recommendations are provided to assist transportation 
agencies in enhancing pedestrian and bicyclist safety near PHB locations.
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2. Data description

Since the late 1990s, Tucson, Arizona has implemented approximately 150 
PHBs (Nassi & Barton, 2008; Nassi et al., 2023). The coordinates of PHB 
locations for this study were obtained from Google Maps (Google, 2023), 
and their IDs were acquired from the MAXVIEW Advanced Traffic 
Management System (ATMS) platform to facilitate this study. MAXVIEW 
ATMS offers real-time data collection and analysis capabilities for traffic 
signal networks and ITS infrastructure (Q-Free, 2023). For this study, 112 
out of the 150 PHB locations connected to the MAXVIEW ATMS platform 
were selected for analysis, depicted in Figure 2. These 112 PHB locations 
were classified into three groups to serve different analysis purposes in this 
study:

� Group 1: 71 PHB locations with no reported pedestrian and bicycle 
crashes from 2018 to 2021.

� Group 2: 24 PHB locations with reported pedestrian and bicycle crashes 
from 2018 to 2021, but no controller event-based data (hereafter, 
“event-based data”) was logged at these locations.

� Group 3: 17 PHB locations with reported pedestrian and bicycle crashes 
from 2018 to 2021, and event-based data was logged at these locations.

Figure 2. Locations of Pedestrian Hybrid Beacons in Tucson, Arizona.
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2.1. Crash data

Four years of crash data (from 2018 to 2021) was collected from the 
Arizona Crash Information System (ACIS), which is maintained by the 
Arizona Department of Transportation (ADOT) (ADOT, 2023). The ACIS 
dataset provides various details about crashes, including driver, pedestrian, 
and bicyclist information, environmental factors, and geometrical informa-
tion. To define the influential safety area associated with PHB locations, a 
300 ft radius was used as a buffer. This radius is commonly used in trans-
portation literature to identify areas of interest (Ryan et al., 2022). 
Pedestrian and bicycle crashes beyond this 300 ft buffer were excluded since 
they were judged to be less influenced by PHBs. A total of 76 pedestrian 
and bicycle crashes were reported near the 112 PHB locations during the 
study period.

2.2. Event-based data

High-resolution event-based data is informative and can be accessed 
through traffic controllers (Li & Wu, 2021; Zhang et al., 2023). When a 
pedestrian or bicyclist activates the pushbutton at a PHB location, the traf-
fic controller will log the events, such as “Pedestrian Call Registered,” 
“Walk,” and “Flashing Don’t Walk,” for each phase until the PHB signal is 
not activated (Li & Wu, 2021). However, the event-based data at PHBs is 
rare because not all agencies are archiving this data due to limitations in 
their databases, concerns about cost-effectiveness, or the perception that 
such data collection may not be particularly useful or aligned with their 
operational goals. Despite these challenges, the research team has been col-
lecting and archiving event-based data at over 60 PHBs in Tucson, 
Arizona, since 2018.

The event-based data was used in this study to identify whether the 
PHBs were activated when pedestrian and bicycle crashes happened. Crash 
reports may be inaccurate or incomplete due to time restrictions and the 
limited experience of some police officers (Imprialou & Quddus, 2019; 
Lopez et al., 2022). Additionally, police-reported crash locations are prone 
to inaccuracies (Lopez et al., 2022), and the reported crash time may not 
align precisely with the actual time of the crash (Imprialou & Quddus, 
2019). Thus, it is challenging to accurately capture whether PHBs are acti-
vated when crashes happen. Given the typically low volume of pedestrian 
traffic near PHB locations in Tucson (Fitzpatrick et al., 2019), if PHBs were 
activated shortly before crashes, it is more likely that crashes occurred 
while PHBs were activated.

This study conducted a sensitivity analysis to estimate if PHBs were acti-
vated when crashes happened near PHB locations. Two types of time 
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buffers were applied: minutes before the reported crash time (ranging from 
5 to 30 minutes in 5-minute increments) and minutes after the reported 
crash time (ranging from 1 to 5 minutes in 1-minute increments). Due to 
limited event-based data availability, the analysis focused on 30 crashes 
from 17 PHB locations (Group 3 in Figure 2). For example, if a crash was 
reported at 8 am, the event-based data from 7:35 to 8:01 am was examined, 
assuming the actual crash time falls within this interval. If PHB activation 
was detected within this period, the crash was labeled as occurring during 
PHB activation.

Various combinations of time buffers were tested, and no considerable 
variation was observed in the results across time buffers. Specifically, the 
results obtained 25 minutes and 30 minutes before the reported crash time 
were found to be identical. For the “Activated” sample, which represents 
crashes that occurred while PHBs were activated, the sample size was 15 
for the loosest buffers (30 minutes before and 5 minutes after the reported 
crash time). Likewise, the sample size was 11 for the tightest buffers 
(5 minutes before and 1 minute after the reported crash time). Therefore, 
15 samples labeled as “Activated” within the time window of 25 minutes 
before and 1 minute after the reported crash time were selected for this 
study.

2.3. INRIX speed data

Approximately 74 percent of pedestrian fatalities occur at non-intersection 
locations, with vehicle speed often playing a crucial role (FHWA, 2021; 
NHTSA, 2022b). However, limited studies have evaluated how vehicle 
speed impacts pedestrian and bicycle safety near PHBs. This study accessed 
the citywide speed data from the INRIX dataset. INRIX data aggregates 
information from millions of GPS-enabled vehicles, mobile devices, conven-
tional road sensors, and numerous other sources (INRIX, 2023). Research 
has demonstrated that INRIX data offers accurate speed data for traffic 
operations and research purposes (Kim & Coifman, 2014).

2.4. Variable statistics

The variables used in this study comprised several factors, including traffic 
conditions, demographic and socioeconomic data, and lighting conditions. 
These factors were believed to be influential in pedestrian and bicycle 
safety, yet they have not been specifically evaluated near PHBs. Table 1
summarizes the statistics of these selected variables. Census block group 
data was downloaded from the AZGeo Data Search platform (AGIC, 2023). 
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Natural lighting conditions were collected from the Sunrise & Sunset Times 
website (Times, 2022).

3. Methodology

This study analyzed influential factors affecting pedestrian and bicycle 
crashes near PHB locations in Tucson, Arizona. The predictors examined 
include traffic conditions (approach speed and approach speed standard 
deviation), speed limit on major roads, population density, proportion of 
White and Hispanic individuals, household income, lighting conditions, 
and more. These factors were considered influential in pedestrian and 
bicycle safety but have not undergone specific evaluation near PHBs. This 
study did not include certain factors, such as pedestrian volume, due to a 
lack of available data.

The data was observed a two-level structure, namely, intersection-level 
and individual-level predictors. To account for unobserved heterogeneity 
and model the multilevel data structure, Multilevel Poisson-Lognormal 
regression models (Aitchison & Ho, 1989) were employed to reveal the 
extent to which a specific predictor would affect the number of pedestrian 
and bicycle crashes at each PHB location. These models were incorporated 
into a full Bayesian framework for estimation, which effectively captures 
complex correlations in multilevel structured data (Cheng et al., 2018).

3.1. Multilevel Poisson-Lognormal models

Although some studies assumed that crash data follows a negative binomial 
distribution (Xie et al., 2013; Zhang et al., 2023), given the small sample 
size in this study, the response variable, i.e., the number of pedestrian and 
bicycle crashes near each PHB location, was assumed to follow a Poisson- 
Lognormal distribution. This choice is due to the Poisson-Lognormal distri-
bution’s ability to handle small sample sizes and overdispersion in crash 
data more effectively than a negative binomial distribution (Cheng et al., 
2018). In Poisson-Lognormal regression models, the observed crash fre-
quency is modeled as a Poisson distribution, while the random effects are 
modeled as a Lognormal distribution. Additionally, the crash counts across 
PHB locations are assumed to be independent. The base Poisson- 
Lognormal model is described below:

Assume that the response variable Yi, i.e., the predicted crash frequency 
for each PHB location i is independent Poisson distributed with a mean 
parameter hi :

Yi � PoissonðhiÞ (1) 
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To address overdispersion for unobserved heterogeneity and the random 
effect across individuals or PHB locations (Wang et al., 2015), it assumes that:

hi ¼ liexpðeiÞ (2) 
Log lið Þ ¼ b0 þ bXi (3) 

where Xi represents the predictors (e.g., approach speed) for PHB location 
i, b0 is the intercept, b is a vector of regression parameters that need to be 
estimated, the unobserved heterogeneity ei is assumed to be uncorrelated 
with the predictors, the term expðeiÞ is a multiplicative random effect, and 
it assumes a lognormal distribution:

exp eið Þ � Lognormal 0, r2
e

� �
, or ei � Nð0, r2

eÞ (4) 

where the unobserved heterogeneity ei is assumed to be multivariate, nor-
mally distributed with mean equals 0 and variance r2

e , the variance param-
eter, 1=r2

e , is specified as Gamma prior distribution (0.001, 0.001).
To accommodate the hierarchical structure of the data and unobserved 

heterogeneity, multilevel Poisson-Lognormal regression models were 
employed and described as follows (Huang & Abdel-Aty, 2010; Wang et al., 
2015; Xie et al., 2013):

Individual-level model (Wang et al., 2015):

Log hið Þ ¼ bL1
0 þ bL1XL1 þ eL1 (5) 

where XL1 is the vector of individual-level variables, e.g., traffic conditions, 
bL1 is the vector of coefficients estimated for individual-level variables, eL1 is 
the random effect of the individual-level model and explains the between- 
individual variation, and expðeL1Þ follows a Lognormal distribution.

Intersection-level model (Wang et al., 2015):

bL1
0 ¼ bL2

00 þ bL2
0 XL2 þ eL2 (6) 

where bL2
00 is the intercept of the intersection-level model, bL2

0 is the vector 
of coefficients estimated for intersection-level variables, e.g., population 
density, XL2 is the vector of intersection-level variables, eL2 is the random 
effect of the intersection-level model and explains the between-intersection 
variation, and expðeL2Þ follows a Lognormal distribution.

The individual-level model was combined with the intersection-level 
model by substitution to create the combined model:

Log hið Þ ¼ bL2
00 þ bL2

0 XL2 þ eL2 þ bL1XL1 þ eL1 (7) 

3.2. Bayesian inference and implementation

In the full Bayesian approach, parameters are considered random variables 
represented by prior distributions. The approach utilizes observed data and 
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prior distributions to calculate posterior distributions for the parameters. 
Priors capture existing knowledge of the parameters, which can be updated 
based on the observed sample and the relationship between explanatory 
and response variables. A few studies set the priors based on their experi-
ence, while several studies suggested that priors derived using maximum 
likelihood estimation can improve model fitting performance more effect-
ively than methods based on moments or expert experience (Wang et al., 
2015). In this study, the maximum likelihood method was used to estimate 
the parameters of negative binomial models. The mean and variance esti-
mates were then utilized to construct a normal distribution for the varia-
bles, which served as the prior distribution in the Bayesian multilevel 
regression analysis. The model estimations were conducted using the 
“brms” package in R (B€urkner, 2017).

However, several limitations of the Bayesian multilevel Poisson- 
Lognormal regression model are noted. One key aspect is how the chosen 
priors can impact the model outcomes. Moreover, this model assumes an 
absence of spatial correlation among PHB locations, ignoring the potential 
impact of unobserved variables that might significantly affect crash fre-
quency in nearby PHB sites. Additionally, the computational costs tied to 
maximum likelihood estimation add to the challenges.

3.3. Model assessment

Leave-One-Out cross-validation (LOO-CV) was used to assess the perform-
ance of different Bayesian models due to its greater robustness compared 
to the Watanabe-Akaike information criterion (WAIC) and the deviance 
information criterion (DIC), especially in cases of finite samples with weak 
priors or influential observations (Gelman et al., 2013). In addition, LOO- 
CV can capture the uncertainty in the estimates of the model parameters 
and can be used for models with complex hierarchical structures. The 
detailed LOO-CV process can be found in (Gelman et al., 2013). A lower 
Leave-One-Out Information Criterion (LOOIC) value indicates a better 
model fit, but it can be sensitive to the choice of prior distributions 
(B€urkner, 2017). The LOO-CV process was carried out through the “loo” 
package in R. Moreover, Mean Absolute Deviation (MAD) and Mean 
Squared Predicted Error (MSPE) were employed to evaluate the model’s 
accuracy.

4. Results and discussion

The section discussed the situations in which individuals tended to cross 
roads when PHBs were not activated and consequently involved in crashes. 
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Then, this section observed differences in characteristics between crash- 
prone and non-crash-prone PHB locations. Lastly, factors contributing to 
pedestrian and bicycle crashes near both activated and all available PHB 
locations were analyzed. The study justified grouping pedestrian and bicycle 
crashes due to similar crossing behaviors near PHB locations and the pres-
ence of lane markings for bicyclists at some PHB locations in Tucson, 
Arizona (Nassi et al., 2023).

4.1. Descriptive analysis

4.1.1. Characteristics behind non-activation of PHBs and resulting crashes
Data from Group 3 in Figure 2 was used for this section. Figure 3 displays 
boxplots for approach speed and approach speed standard deviation. The 
results show that the PHB non-activation group generally had a higher 
median approach speed than the PHB-activation group while also display-
ing a smaller variation in approach speed. When approach speeds were 
around 30 to 35 mph, and the median standard deviation of approach 
speeds was around 2.8 mph, individuals tended to cross roads near PHB 
locations when PHBs were not activated and experienced crashes.

Figure 4(a) illustrates that young individuals, with a median age of 29, 
tended to cross roads near PHB locations when PHBs were not activated 

Figure 3. Boxplots for approach speed and standard deviation of approach speed.

Figure 4. Age and gender of pedestrians and bicyclists.
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and experienced crashes. As noted, adolescents and young adults may 
exhibit a proclivity towards taking risks on the road, such as engaging in 
dangerous pedestrian behaviors (Wang et al., 2022). In addition, 
Figure 4(b) shows that males were more prone to cross roads near PHB 
locations when PHBs were not activated and ended in crashes. This finding 
was consistent with previous studies that found male pedestrians were 
more risk-taking than female pedestrians, as they committed significantly 
more violations than females (Chai et al., 2016).

4.1.2. Differences in PHB locations with/without pedestrian and bicycle 
crashes reported

This section examined the difference between PHB locations with reported 
crashes (Groups 2 and 3 in Figure 2) and those without reported crashes 
(Group 1 in Figure 2). Figure 5 displays the distribution of hourly 
approach speeds for both crash-prone PHB locations (labeled as “Crash” in 
Figure 5) and non-crash-prone PHB locations (labeled as “No Crash” in 
Figure 5), and the corresponding results of Welch t-tests. In general, from 
9 am to 10 pm, the approach speeds at crash-prone PHB locations ranged 
from the 25th percentile at 25 mph to the 75th percentile at 33 mph. These 
speeds were statistically different from the approach speeds observed at 
non-crash-prone PHB locations, which ranged from the 25th percentile at 
27 mph to the 75th percentile at 35 mph. Moreover, crash-prone PHB loca-
tions exhibited higher standard deviation in approach speed compared to 
those without reported crashes, as shown in Figure 6. This trend showed 
that a higher variation in approach speed may contribute to an increased 
frequency of pedestrian and bicycle crashes near these PHB locations.

The population density, proportion of White individuals, and household 
income for crash-prone and non-crash-prone PHB locations were also eval-
uated. There was no significant difference between the two groups of 

Figure 5. Hourly approach speeds by time of day of PHB locations with/without pedestrian 
and bicycle crashes reported.
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locations in population density. However, there was a slight variation in 
the proportion of White individuals between the two groups, as shown in 
Figure 7(a). Locations with a higher proportion of White individuals 
tended to have a lower frequency of pedestrian and bicycle crashes, aligning 
with previous literature indicating disparities in traffic injuries among non- 
White individuals (Haddad et al., 2023; Ryan et al., 2021). Additionally, 
locations with a higher household income tended to have a lower frequency 
of pedestrian and bicycle crashes, as shown in Figure 7(b).

4.2. Statistical analysis

Bayesian multilevel Poisson-Lognormal regression analysis was conducted 
to examine the factors influencing the frequency of pedestrian and bicycle 
crashes near PHBs. The first section explored potential reasons for crashes 
during road crossings with activated PHBs, and the subsequent section 
observed potential reasons behind pedestrian and bicycle crashes near all 
available PHB locations in this study.

4.2.1. Influential factors of crashes with activation of PHBs
Both crash and non-crash events, when PHBs were activated, were utilized 
in this investigation. To obtain the non-crash events, a matched case-con-
trol design was applied (Wali et al., 2018; Yu & Abdel-Aty, 2013). This 
design is an effective method for studying rare events (Zheng et al., 2010). 
Each crash event was matched with four non-crash events (Zheng et al., 
2010), ensuring they occurred at the same PHB location, on the same day 
of the week, and the PHB was activated. A total of 75 records (15 crash 
events collected from Group 3 in Figure 2 and 60 non-crash events) were 
included for analysis.

Figure 6. Standard deviation of approach speed by time of day of PHB locations with/without 
pedestrian and bicycle crashes reported.
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Initially, various predictors, such as traffic conditions, speed limit, popu-
lation density, proportions of White and Hispanic individuals, household 
income, and lighting conditions, were considered. The Pearson test was 
conducted to ensure multicollinearity and a high correlation between pre-
dictors was not present in the data. Table 2 presents the correlation coeffi-
cients of the Pearson test. The speed limit was positively correlated with 
approach speed, while the proportion of Hispanic individuals was nega-
tively correlated with the proportion of White individuals. Thus, one out of 
two predictors was selected in the model estimation process. The variance 
inflation factor (VIF) test was also performed to ensure no multicollinearity 
between all chosen predictors. All VIF values are less than four in this 
study, which is acceptable in previous transportation-related studies (Haule 
et al., 2021; Zhou et al., 2022).

Additionally, traffic conditions contain random effects that were assumed to 
vary across different records within each PHB location. However, fixed effects, 
like the proportion of White people and population density, would remain 
unchanged within records at the same PHB location but differ between PHB 
locations.

Different predictor combinations were tested before model estimation, and 
goodness-of-fit was evaluated using LOOIC, MAD, and MSPE. Models 
accounting for random effects showed better fit (lower LOOIC values) and 
higher accuracy (lower MAD and MSPE values) overall, as shown in Table 3.

Model estimation results are presented in Table 4. The reference group 
for lighting conditions was daylight. The results show that the proportion 
of White individuals and light conditions during the night were statistically 
significant at 95% Bayesian credible interval (BCI), while the pre-crash/pre- 
activation approach speed was statistically significant at 90% BCI. However, 
the standard deviation of approach speed, population density, household 
income, and light conditions during dawn were not statistically significant.

Figure 7. Boxplots for proportion of white individuals and household incomes near all PHB locations.
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When the PHB was activated, an observed trend indicates that a higher 
proportion of White individuals tended to correlate with a roughly 46% 
decrease in crash odds. This may be due to regions with more non-White 
residents experiencing higher crash rates, likely because of transportation 
system inequalities (Ryan et al., 2021). Lower education levels in these 
regions may also contribute to increased crash risk (Liu et al., 2022). 
Moreover, nighttime tended to experience more crashes near the PHB loca-
tion than daylight, even with the activated PHB. Reduced visibility for driv-
ers, pedestrians, and bicyclists could be the potential reason. Additionally, 
an observation is that with a one-unit increase in approach speed 5 to 
10 minutes prior to crashes, the odds of crashes occurring near PHB loca-
tions decreased by around 2%. This could potentially be because a lower 
approach speed may be associated with a higher volume, and a higher vol-
ume of traffic was always linked to higher crash risks (Fitzpatrick et al., 
2021). This finding was in line with (Yu et al., 2013): the likelihood of 
motor-vehicle crashes increased when the average speed decreased 5 to 
10 minutes before crashes occurred.

4.2.2. Influential factors of crashes near 112 PHB locations
The analysis was conducted using the data collected at 112 PHB locations, as 
shown in Groups 1, 2, and 3 in Figure 2. 76 pedestrian and bicycle crashes were 

Table 2. Correlation coefficients of pearson test.

Approach 
speed 
(mph)

Std. dev. of 
approach 

speed 
(mph)

Population 
density 

(per sqmi)
Proportion 
of White

Proportion 
of Hispanic

Household 
income ($)

Speed 
limit (mph)

Approach speed (mph) 1 – – – – – –
Std. dev. of approach  

speed (mph)
−0.07 1 – – – – –

Population density  
(per sqmi)

−0.26 0.12 1 – – – –

Proportion of White 0.13 −0.07 −0.12 1 – – –
Proportion of Hispanic −0.12 0.08 0.04 −0. 96 1 – –
Household income ($) 0.33 −0.15 −0.38 0.44 −0.33 1
Speed limit (mph) 0.58 −0.09 −0.17 0.04 −0.09 0.33 1

Table 3. Model assessments.
Without accounting for random effects Account for random effects

LOOIC (SE) MAD MSPE LOOIC (SE) MAD MSPE

Model 1 85.80 (12.83) 0.32 0.16 81.55 (11.91) 0.32 0.16
Model 2 88.75 (13.51) 0.31 0.15 82.02 (12.09) 0.31 0.15
Model 3 88.58 (13.48) 0.32 0.15 82.08 (12.12) 0.31 0.16
Model 4 7.38 (2.77) 4.86 3.55 6.54 (3.3) 4.00 3.19
Model 5 3.83 (1.66) 15.3 32.9 2.39 (1.21) 1.97 7.29
Model 6 80.83 (13.48) 0.27 0.13 74.77 (12.24) 0.27 0.13

Notes: LOOIC: Leave-One-Out Information Criterion; MAD: Mean Absolute Deviation; MSPE: Mean Squared 
Predicted Error; SE: standard error; Model 1 to Model 6: the predictors containing fixed effects are approach 
speed, std. dev. of approach speed, proportion of White, population density, household income, and lighting 
conditions, respectively.
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reported near 41 PHB locations (Groups 2 and 3 in Figure 2), while no crash 
was reported near 71 PHB locations (Group 1 in Figure 2) from 2018 to 2021.

The results of the model estimation are presented in Table 4. The results 
show that pedestrians and bicyclists in regions with lower proportions of 
White individuals tended to be involved in crashes near PHB locations. 
Specifically, with a one unit increase in the proportion of White individu-
als, the odds of crashes occurring decreased by approximately 99%. 
Furthermore, with a one unit increase in approach speed, the odds of 
crashes occurring near PHB locations decreased by around 23%. This could 
be because the driver’s yielding rate could be above 95 percent for PHBs 
on major streets with higher speeds (Fitzpatrick et al., 2006).

5. Conclusions

Pedestrian Hybrid Beacons (PHBs) assist pedestrians in safely crossing 
unsignalized streets or highways at marked crosswalks by warning and con-
trolling traffic. To increase PHB usage and and improve pedestrian and 
bicyclist safety near PHB locations, this study employed descriptive and 
Bayesian multilevel Poisson-Lognormal regression analyses. The objectives 
of this study were to 1) understand when people tended to cross when 
PHBs were not activated and ended in crashes; 2) examine varying crash 
frequencies near different PHB locations to understand differences; and 3) 
investigate factors that contributed to pedestrian and bicycle crashes during 
road crossings near activated PHBs and all available PHBs in this study.

The primary observations and contributions of this study include:

� When the approach speeds were around 30 to 35 mph, with a median 
standard deviation of approximately 2.8 mph, pedestrians and bicyclists 
tended to cross when PHBs were not activated.

Table 4. Summary of model results.
Results Predictors Mean Std. dev. 95% BCI Odd ratio (95% CI)

Influential factors 
of pedestrian 
and bicycle 
crashes near 
activated PHBs

Approach speed 5 to 
10 minutes before crash/ 
activation (mph)

−0.02 0.05 (−0.12, −0.004)� 0.98 (0.89, 1.00)

Std. dev. of approach 
speed (mph)

0.05 0.18 (−0.32, 0.41) 1.05 (0.72, 1.45)

Proportion of White −0.61 2.05 (−4.77, −0.08) 0.54 (0.007, 0.93)
Population density (per sqmi) −0.001 0.01 (−0.02, 0.02) 0.99 (0.97, 1.02)
Household income ($) −0.0001 0.00 (−0.009, 0.0002) 0.997 (0.991,1)
Lighting (Dawn) 0.65 0.89 (−1.13, 2.04) 1.91 (0.31, 9.66)
Lighting (Night) 1.56 0.57 (0.46, 2.66) 4.74 (1.52, 14.39)

Influential factors 
of pedestrian 
and bicycle 
crashes near 112 
PHB locations

Hourly approach speed (mph) −0.26 0.16 (−0.55, −0.16) 0.77 (0.58, 0.85)
Std. dev. of approach 

speed (mph)
0.08 0.35 (−0.54, 0.58) 1.07 (0.58, 1.78)

Proportion of White −6.57 3.97 (−8.87, −6.56)� 0.0014 (0.00, 1.37)
Population density (per sqmi) −0.01 0.02 (−0.05, 0.01) 0.99 (0.96, 1.00)
Household income ($) −0.0001 0.0001 (−0.0006, 0.0002) 0.99 (0.99, 1.00)

Notes: BCI: Bayesian credible interval, �: 90% BCI, CI: confidence interval.
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� Young individuals (with a minimum age of 13 and a median age of 29) 
and males tended to cross when PHBs were not activated compared to 
other population groups. This aligns with previous findings that 
reported males and teenagers were less likely to press pushbuttons at 
signalized intersections (Kutela & Teng, 2020).

� Approach speeds at crash-prone PHB locations (ranging from the 25th 
percentile at 25 mph to the 75th percentile at 33 mph) were statistically 
different from non-crash-prone ones (with approach speeds ranging 
from the 25th percentile at 27 mph to the 75th percentile at 35 mph) 
between 9 am to 10 pm.

� The odds of pedestrian and bicycle crashes occurring near PHB loca-
tions increased when approach speeds decreased 5 to 10 minutes before 
the crashes. This finding is consistent with conclusions from the litera-
ture, such as a study by Yu et al. (2013), which indicated that the likeli-
hood of motor vehicle crashes increased when the average speeds 
decreased 5 to 10 minutes before the crashes occurred (Yu et al., 2013).

� Regions with a greater proportion of non-White individuals and lower 
household incomes tended to experience more pedestrian and bicycle 
crashes near PHB locations.

� Pedestrian and bicycle crashes were more likely to occur at PHB loca-
tions during nighttime compared to daytime, even when the PHBs were 
activated.

The findings suggest that, in addition to providing general guidance on 
PHB usage, policymakers may benefit from targeted education efforts 
aimed at young individuals, males, and residents in areas with low propor-
tions of White individuals and lower household income. Such initiatives 
could potentially boost PHB utilization and enhance pedestrian and bicyc-
list safety in proximity to PHB locations. Furthermore, particular attention 
was found to be most helpful when traffic speeds are about 30 to 35 mph 
and lower, when traffic conditions are unpredictable, and when pedestrians 
cross during nighttime. These factors may elevate the risk of pedestrian 
and bicycle crashes near PHB locations. Consequently, implementing sup-
plementary safety countermeasures and developing strategies to improve 
pedestrian and bicyclist safety near PHB locations with the aforementioned 
traffic conditions and lighting situations may be advisable. Based on the 
findings of this study, traffic engineers and urban planners could improve 
lighting conditions, signage application, and enhance unpredictable traffic 
volumes by optimizing signal timings of adjacent signalized intersections to 
improve the safety of pedestrians and bicyclists near PHB locations.

The study acknowledges several limitations. First, due to the constraints 
of our sample size, pedestrian and bicycle crashes were combined for 
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analysis. Future studies with larger samples may allow for separate exami-
nations of the influential factors of pedestrian and bicycle crashes. Second, 
the absence of information on factors such as roadway geometries resulted 
in their omission from this study. These factors could potentially affect 
pedestrian and bicyclist safety near PHB locations and need to be consid-
ered in future work. Lastly, it is worth noting that the data is limited to 
Tucson, Arizona, which may impact the generalizability of our findings.
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