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Bayesian Deep Learning Approach for Real-Time
Lane-Based Arrival Curve Reconstruction at

Intersection Using License Plate Recognition Data
Yang He , Chengchuan An , Jiawei Lu , Yao-Jan Wu , Zhenbo Lu, and Jingxin Xia

Abstract— The acquisition of real-time and accurate traffic
arrival information is of vital importance for proactive traffic
control systems, especially in partially connected vehicle envi-
ronments. License plate recognition (LPR) data that record both
vehicle departures and identities are proven to be desirable
in reconstructing lane-based arrival curves in previous works.
Existing LPR data-based methods are predominantly designed
for reconstructing historical arrival curves. For real-time recon-
struction of multi-lane urban roads, it is pivotal to determine
the lane choice of real-time link-based arrivals, which has not
been exploited in previous studies. In this study, we propose
a Bayesian deep learning approach for real-time lane-based
arrival curve reconstruction, in which the lane choice patterns
and uncertainties of link-based arrivals are both characterized.
Specifically, the learning process is designed to effectively capture
the relationship between partially observed link-based arrivals
and lane-based arrivals, which can be physically interpreted as
lane choice proportion. Moreover, the lane choice uncertainties
are characterized using Bayesian parameter inference techniques,
minimizing arrival curve reconstruction uncertainties, especially
in low LPR data matching rate conditions. Real-world exper-
iment results conducted in multiple matching rate scenarios
demonstrate the superiority and necessity of lane choice modeling
in reconstructing arrival curves.

Index Terms— Bayesian deep learning, real-time arrival curve
reconstruction, real-time vehicle count estimation, license plate
recognition data.

I. INTRODUCTION

ARRIVAL curves depict time-stamped cumulative vehicle
arrivals across signal cycles, offering a more realistic

and informative traffic arrival profile compared to the mean or
cyclic arrival rates [1], [2], [3], [4]. Real-time arrival curves
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are valuable in deriving timely performance measures (e.g.,
real-time queue length [5], [6], [7], [8]) and hence optimizing
signal timing [9], [10] and connected and automated vehicle
(CAV) trajectory [11], [12], [13], etc. However, estimating
lane-specific real-time arrival curves on multi-lane urban roads
is still a challenging task due to the complicated lane choice
behaviors associated with different movements.

Previous studies extensively exploited data from
fixed-location detectors and mobile sensors to acquire
traffic arrival information. Fixed advance detectors, installed
at a fixed distance upstream of the stop bar, are commonly
used to detect arrivals. However, when the vehicular queue
exceeds the detector location, known as the queue-over-
detector (QOD) condition, newly arriving vehicles can
not be detected, leading to under-estimated arrivals [14].
Despite further studies imposing uniform assumptions on
arrivals during QOD, the estimated arrivals are approximated.
Mobile sensors, such as floating cars and connected vehicles,
offer arrival data with broader spatial coverage. Despite the
expected increase, the penetration rate remains low for a
relatively long term. As a result, only a few probe vehicle
samples are available at intersections within a signal cycle,
limiting their application primarily to characterizing the cyclic
arrival patterns [15].

In recent years, License Plate Recognition (LPR) technology
has seen widespread adoption in cities across China and
globally, paving the way for innovative applications, such as
queue length estimation [8], [16], [17], [18], dynamic vehic-
ular demand estimation [19], [20], and commuting pattern
analysis [21], etc. License Plate Recognition (LPR) data inte-
grates the strengths of both fixed-location and mobile sensors
while offering superior features. At the intersection level, LPR
functions similarly to fixed detectors by identifying lane-based
vehicle departures, but with the additional capability of record-
ing each vehicle’s unique license plate. At the network level,
akin to mobile sensors, LPR enables vehicle tracking across
multiple intersections by matching their license plate, yet it
surpasses mobile sensors with substantially higher penetration
rates. With the tracking ability and high penetration, LPR data
have facilitated great advancements in effectively estimating
cyclic arrival rates [2], [3], [4] and reconstructing the more
challenging arrival curves [22], [23].

The acquisition of arrival curves is equivalent to determining
the cumulative arrival indices of all vehicles. Ideally, for two
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adjacent intersections monitored by LPR sensors, all these
indices can be determined by matching license plates from the
upstream to the downstream intersection. However, in practice,
the arrival curve reconstruction problem is raised as partial
unmatched vehicles exist owing to recognition failures, lack
of upstream LPR sensors, mid-block traffic merging, etc.
To tackle this, the existing approaches mainly formulated
an interpolation-based method to infer the arrival indices of
unmatched vehicles based on matched vehicles. For example,
Zhan et al. [22] customized a cyclic arrival function-based
Gaussian Process (GP) model to interpolate the arrival indices
of unmatched vehicles while characterizing arrival uncertain-
ties. Mo et al. [23] further improved the GP model by mending
the erroneous license plates, enhancing reconstruction robust-
ness in undesirable matching conditions.

However, applying the interpolation methods to real-time
reconstruction presents challenges. These methods rely on
previously matched vehicles to reconstruct arrival curves [22],
[23], but the lane choices of real-time link arrivals are often
undetermined. As a result, the intended direction of the
vehicles traveling on the road remains unknown, leading to
inaccurate real-time reconstruction. Therefore, modeling the
lane choices of real-time arriving vehicles is pivotal for real-
time reconstruction. Moreover, lane choice behaviors are often
stochastic owing to different driving preferences. For example,
through-going drivers may choose either the lane with the
shortest queues or the one requiring the fewest manipulations.
Consequently, characterizing the uncertainties in lane choice
becomes essential, especially in data-limited scenarios where
these behavioral patterns are difficult to observe.

This study proposes a Bayesian deep learning approach
for real-time lane-based arrival curve reconstruction using
LPR data, in which lane choice patterns and uncertain-
ties are both characterized. Specifically, the learning process
is designed to capture the relationships between partially
observed link-based arrivals and lane-specific arrivals, which
can be physically interpreted as lane choice proportion. More-
over, the lane choice uncertainties are modeled to minimize
arrival curve reconstruction uncertainties, especially in low
LPR data matching rate conditions.

The contributions of this study are summarized as follows

1) A Bayesian deep learning approach is proposed to recon-
struct real-time lane-based arrival curves using LPR
data, in which lane choice patterns are characterized.
Specifically, the learning process is designed to capture
the relationship between partially observed link-based
arrivals and lane-specific arrivals.

2) Building on lane choice learning, Bayesian parameter
inference techniques are used to robustly characterize
lane choice uncertainties. This development effectively
minimizes the arrival curve reconstruction uncertainties
in low LPR data matching rate (e.g., 10 %) conditions.

3) The proposed approach is validated on a real-world
dataset using both deterministic and probabilistic evalu-
ation metrics. Experimental results indicate the superi-
ority of the proposed lane-choice learning-based method
and the necessity of modeling lane-choice uncertainties.

II. LITERATURE REVIEW

According to the sensing technologies acquiring traffic
arrivals, the existing approaches can be broadly divided
into two categories, fixed-location detector-based and mobile
sensor-based. Fixed detector-based approaches capture the
arrival data mainly by detecting the vehicle’s presence using
advanced detectors installed at a fixed distance upstream of
the stop bar at the intersection [24]. However, when the queue
tail exceeds the detector, known as the queue-over-detector
(QOD) condition, new arrivals can not be detected due to
continuous occupation of the detector [6], [7]. The detector
occupation leads to underestimated traffic arrivals, especially
in over-saturated conditions when queues can not dissipate
in one signal cycle. To address this problem, researchers [14],
[25] have assumed a uniform distribution of traffic arrival dur-
ing the QOD condition, though this is only an approximation
of actual arrivals.

With the popularization of ride-hailing services and the
emergence of connected vehicle technologies, massive vehicle
trajectory data from mobile sensors have gained great attention
in traffic state monitoring and performance evaluation [26],
[27]. Existing studies, assuming stationary arrival pattern
during a historical period, have utilized historical data from
multiple signal cycles to estimate cyclic arrival rates through
various methods such as constant global index difference [28],
EM-solved maximum likelihood estimation [5], [29], and
kernel density estimation [15]. Prior studies have indicated
that sufficient probe samples, typically at least one or two
per signal cycle, are required to capture more refined arrival
profiles [30], [31]. However, despite expected increases, the
penetration rate of mobile sensors remains low in the current
and near future. The unbalanced spatial distribution of mobile
sensors further exacerbates these challenges, limiting their
application to cyclic arrival pattern analysis.

As a special type of fixed-location detector, LPR systems
not only record vehicle passing timestamps and lanes but also
register informative vehicle license plate identities. In addition,
LPR integrates the strength of mobile sensors by enabling
vehicle tracking across the network through license plate
matching. Further, it presents substantially higher penetration
rates and spatial coverage than mobile sensors, making it
desirable for both estimating cyclic arrival rates [2], [4] and
reconstructing more challenging arrival curves [22], [23].
The existing arrival curve reconstruction methods mainly
extracted lane-based arrival indices by matching the vehicle’s
license plate and then formulated interpolation-based models
to infer the indices of those unmatched vehicles. Zhan et
al. [22] customized an arrival function-based Gaussian process
(GP) method to interpolate the cumulative arrival indices of
unmatched vehicles while capturing the arrival uncertainties.
The piece-wise linear arrival function is used by assuming
a cyclic arrival pattern which may not always guaranteed in
practice. Mo et al. [23] further improved the GP model by
developing a data-mending approach to correct the erroneously
recognized license plate, providing more matched vehicles
and enhancing model robustness in limited data conditions.
In summary, the existing studies have effectively leveraged
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Fig. 1. Problem statement and the relationship between cumulative departure
and arrival curves.

LPR data to reconstruct arrival curves, accounting for their
stochastic natures and practical constraints. Despite the great
success, these interpolation-based approaches still rely on
historical matched vehicles regarding real-time reconstruction.
The informative real-time link-based arrival data available
from LPR systems are not exploited, which weakens their
capability in real-time applications.

III. PROBLEM STATEMENT

A. Lane-Based Arrival Curve Reconstruction (ACR)

Fig. 1(a) describes a common scenario of the license plate
recognition (LPR) data collection at two adjacent intersections.
LPR cameras are usually installed to monitor the vehicle
departures of left-turn and through traffic under the protective
phase (i.e., hollow rectangles in Fig. 1(a)), while the right-turn
traffic under the permitted phase (i.e., hollow rectangles in
Fig. 1(a)) is not monitored. By indexing the recognized depart-
ing vehicles recorded in LPR data, the lane-based cumulative
departure curves at upstream and downstream intersections
can be obtained. By matching the license plates of departed

vehicles from the upstream to the downstream intersection,
the lane-based arrival indices of partial vehicles can be deter-
mined, as shown in Fig. 1(b). The arrival curve reconstruction
problem is raised as not all the vehicles can be matched owing
to recognition failures, lack of upstream LPR sensors, mid-
block traffic merging, etc. There are several assumptions used
in this study
• Assumption 1: The vehicle travel time within the inter-

section is ignored. As a result, the traffic departures
from the stop-line of the upstream approaching lane (i.e.,
x = x0) are approximated to the link-based traffic arrivals
at the upstream section of the target link (i.e., x = x1),

• Assumption 2: The mid-block merging traffic arrivals are
regarded as the link-based traffic arrivals at the upstream
section of the link (i.e., x = x1) since they will eventually
depart from the downstream lanes.

• Assumption 3: The upstream arriving traffic arrivals
that diverge to side streets in the mid-block section are
not considered in this study, as they do not pass the
downstream lanes.

To obtain the lane-based traffic arrival curve, there are four
types of vehicle cumulative curves of concern:

1) Lane-based upstream departure curves at the section of
upstream approaching lane x0, D∗l ′ (t, x = x0), where l ′

is the upstream lane heading to the target link, e.g., l ′ ∈
{LT, TH1, TH2, RT} in Fig. 1.

2) Link-based arrival curve at the upstream section of target
link x1, S∗ (t, x = x1),

3) Lane-based departure curves at downstream section x3,
D∗l (t, x = x3), where l is the downstream lane, e.g., l ∈
{LT, TH, RT} in Fig. 1.

4) Lane-based arrival curve at the upstream section x1,
Al (t, x = x1), where l is the downstream lane, e.g.,
l ∈ {LT, TH, RT} in Fig. 1.

Based on Assumption 1, the upstream link-based arrival
curve is approximated to the sum of upstream lane-based
departures that head to the target link, i.e.,

S∗ (t, x = x1) =
∑

l ′
D∗l ′ (t, x = x0), (1)

where l ′ is the upstream lane heading to the target link,
e.g., l ′ ∈ {LT, TH1, TH2, RT} in Fig. 1. This study aims
to estimate real-time lane-based traffic arrival curves at the
upstream section of the target link Al (t, x = x1) based on the
upstream link-based arrival curve S∗ (t, x = x1) and down-
stream lane-based departure curves D∗l (t, x = x3) using LPR
data from upstream and downstream intersections. Further-
more, based on the estimated upstream arrivals, the traffic
arrivals at arbitrary sections between the upstream and down-
stream can be determined using a free-flow speed, i.e.,

Al (t, x) = Al

(
t −

x − x1

v f
, x1

)
, x1 ⩽ x ⩽ x2, (2)

where v f is the free-flow speed. For example, upstream
arrival curves combined with stochastic free-flow speeds are
employed to obtain the pseudo arrival curves at the down-
stream section (i.e., x = x2) as shown in Fig. 1(b), which is
used to calculate the queue profile at intersection [8].
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For the sake of simplicity, we hide the spatial index of the
arrival and departure curves, since the symbol contains spatial
information. For example, the lane-based arrival curve at the
upstream sections Al (t, x = x1) is simply denoted as Al (t).

B. Cumulative Departure Curves and Matched Vehicles

According to the LPR records, we can obtain the accurate
and complete timestamp sequences for all vehicles that depart
from the stop bar on each monitored lane of both upstream and
downstream intersections. By ordering the vehicle departing
timestamp ti , the corresponding cumulative departure index
D∗l,ti of each vehicle can be determined. The cumulative depar-
ture curve D∗l ′ (t) can be obtained by connecting departure

observations
(

ti , D∗l,ti

)
, i = 1, 2, . . . , D.

The matched vehicles could be obtained through vehicle
license plate matching between upstream and downstream
lanes using vehicle departure records, as shown in Fig. 1(b).
Specifically, a vehicle is regarded as a matched vehicle m if
it is both recognized by the LPR camera to depart from the
upstream lane at time tm and depart from the downstream
lane at time t ′m . Under FIFO rules, the lane-based cumulative
arrival index of the matched vehicle is equal to the lane-based
cumulative departure index, i.e.,

A∗l,tm = D∗l,t ′m , (3)

where t ′m is the timestamp of matched vehicles when passing
the downstream approaching lane.

C. Historical and Real-Time ACR Task

In the process of estimating the lane-based arrival curves,
we utilize License Plate Recognition (LPR) data from both
upstream and downstream locations, dividing the task into
two distinct types: historical and real-time Arrival Curve
Reconstruction (ACR). For historical lane-based ACR, there is
an inherent time lag because once a vehicle is detected by the
upstream LPR camera and then enters the target link, it takes
a link travel time before being detected by the downstream
LPR camera, as illustrated in Fig. 1(b). This time lag results
in delayed updates to the historical ACR. In contrast, the
real-time lane-based ACR aims to reconstruct the arrival
curve instantaneously, regardless of this time lag. This makes
real-time ACR more challenging than the historical ACR but
particularly valuable for applications that require immediate
traffic management responses.

IV. METHODOLOGY

In this section, we formulate the lane-based arrival curve
reconstruction problem based on lane choice learning in
subsection IV-A. Then, a Bayesian arrival curve learner is
designed to learn the lane choice patterns and uncertain-
ties in subsection IV-B. Finally, the historical and real-time
arrival curve reconstruction procedures are introduced in
subsection IV-C, respectively.

A. Lane Choice Learning-Based Arrival Curve
Reconstruction

The reconstruction of the lane-based arrival curve is equiv-
alent to estimating the lane-based cumulative arrival index
of any arriving vehicle. The existing approaches typically
employed interpolation methods such as the Gaussian Process
to infer the lane-based cumulative arrival indices of unmatched
vehicles [22], [23] based on cumulative indices of matched
vehicles, which are extracted through vehicle license plate
matching using LPR data upstream and downstream inter-
sections, as detailed in subsection III-B. While effective in
historical arrival curve reconstruction, these methods depend
on historical matched vehicles when applying to real-time
reconstruction, weakening their reliability in real-time appli-
cations.

In this study, we design a lane choice learning-based arrival
curve reconstruction, which enables the utilization of addi-
tional real-time link-based arrival observations from LPR data
in real-time reconstruction. Specifically, the lane-based cumu-
lative arrival index of any arriving vehicle can be expressed
as

Al,t = A∗l,tm +1al,m,t , (4)

where A∗l,tm is the lane-based cumulative arrivals of the
previous matched vehicle arriving at tm , and 1al,m,t is the
lane-based arrival accumulations during the interval (tm, t].
The lane-based arrival accumulations can be determined by
utilizing the link-based arrival accumulations from LPR data
and a lane choice proportion, i.e.,

1al,m,t = αl ·1s∗m,t , (5)

where 1s∗m,t is the observed link-based arrival accumulations
during the interval (tm, t], αl is a lane choice proportion
that distributes the link-based arrivals to the downstream lane
l. However, in practical scenarios, the link-based arrivals
are partially observed due to the incomplete LPR systems
monitoring of upstream approaching lanes, as demonstrated in
Fig. 1(a). Therefore, instead of using the linear proportion, this
study introduces a non-linear lane choice mapping function
to capture the relationship between the partially observed
link-based arrivals and lane-based arrivals, i.e.,

1al,m,t = f
(
1s∗m,t

)
, (6)

where f is the non-linear lane choice mapping function, 1s∗m,t
is the partially observed link-based arrival accumulations,
which come from multiple upstream lanes, i.e.,

1s∗m,t =
∑

l ′
1s∗l ′,m,t , (7)

where 1sl ′,m,t is the link-based arrival accumulations coming
from upstream approaching lane l ′. According to Assump-
tion 1, the link-based arrival accumulations from the upstream
lane are equal to the upstream lane-based departure accumu-
lations during (tm, t] i.e.,

1s∗l ′,m,t = 1d∗l ′,m,t = D∗l ′,t − D∗l ′,tm , (8)

where D∗l ′,t and D∗l ′,tm is the observable cumulative departure
index of upstream lane-based departure curves at time t and tm .
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Fig. 2. Overview of the proposed lane choice learning-based arrival curve reconstruction framework.

The lane choice patterns of link-based arrivals from different
upstream lanes are distinguishing. Therefore, to capture refined
lane choices and avoid information loss, the Eq. (6) is rewritten
as

1al,m,t = f
(
1s∗l ′,m,t

)
, (9)

where 1s∗l ′,m,t is a vector consisting of multiple observed
upstream link-based arrival accumulations from different
upstream lanes.

In order to better capture lane choice patterns, we introduce
additional upstream signal phase information because different
upstream signal phases could correspond to distinguishing lane
choice patterns. For example, the upstream through phase
probably contributes the most arrivals of downstream through
lane. Therefore, we introduce two additional features, the time
in the signal cycle and the estimation span, and reformulate
the Eq. (6) as

1al,m,t = f
(
1s∗l ′,m,t , tc

m, δ
)

, (10)

where tc
m is the time in signal cycles of the referenced matched

vehicles m, δ = t − tm is the estimation span, i.e., the
time difference between the current estimation and previous
matched vehicles. In addition to LPR data, the proposed
framework is also compatible with the emerging CAV data,
which can provide additional observations, e.g., link-based
arrivals, about mid-block merging traffic, and right-turning
traffic at intersections, which are usually not monitored by
LPR cameras.

B. Lane Choice Learning via Bayesian Deep Learning

In this subsection, we propose a Bayesian Arrival Curve
Learner (BACL) to capture the lane choice patterns and quan-
tify the lane choice uncertainties. Specifically, the lane choice
pattern learning using BACL is illustrated in subsection IV-B1.
We specify how the lane choice uncertainties are quantified in
subsection IV-B2.

1) Learning Lane Choice Patterns: To learn lane choice
patterns, we employ a Bayesian deep learning approach termed
BACL to serve as the lane choice mapping function f ,
which is trained utilizing historical link-based and lane-based
arrival observations. Based on historical matched vehicles, The
historical lane-based arrivals can be calculated as

1a∗l,m = A∗l,tm+1
− A∗l,tm , (11)

where A∗l,tm+1
and A∗l,tm denote the cumulative arrival index

of m and m + 1 matched vehicles. The historical link-based
arrivals from upstream lane l ′ can be calculated based on
observed lane-based departure curves, i.e.,

1s∗l ′,m = 1d∗l ′,m = D∗l ′,tm+1
− D∗l ′,tm , (12)

where D∗l ′,tm+1
and D∗l ′,tm is the cumulative departure index

of upstream lane-based departure curves at time tm+1 and
tm . Given the historical lane-based and link-based arrival
observations, the lane choice pattern learning using BACL is
reformulated as follows

min
L∑

l=1

Ml−1∑
m=1

F
(
1al,m, 1a∗l,m

)
,

s.t. 1al,m = f ω
(
1s∗l ′,m, tc

m, δ
)

, (13)

where
1al,m is the estimated lane-based arrival accumulation dur-

ing the time interval (tm, tm+1
]
, where tm and tm+1

denote the arrival timestamp of mth and (m + 1)th

matched vehicles,
1a∗l,m is the observed upstream lane-based arrival accumu-

lation during the time interval (tm, tm+1
]
,

1s∗l ′,m is a vector consisting of multiple observed link-based
arrival accumulations from different upstream lanes
l ′, during the time interval (tm, tm+1

]
,

F (·) is a probabilistic loss function,
f ω (·) is the BACL-based lane choice mapping function,

Ml is the number of matched vehicles in lane l,
L is the number of lanes.
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2) Learning Lane Choice Uncertainty: This subsection fur-
ther specifies how lane choice uncertainties are characterized.
To quantify the lane choice uncertainties, instead of using
fixed parameter values, we put a prior distribution p (ω) over
the space of model parameters ω of the BACL-based lane
choice mapping function f ω (·), which represents our prior
belief as to which parameters are likely to have mapped
link-based arrivals to lane-based arrivals before we observe
any matched vehicle data, as illustrated in Fig. 3. In this study,
we assume the Gaussian distribution as the prior and posterior
distribution of model weights and the predictive distribution of
estimated lane-based arrivals, given its computation simplicity,
variational inference efficiency, and expressive capability.

For the sake of simplicity, we denote the link-based arrival
accumulations, time in the signal cycle, and estimation span
as model input, i.e., x =

{
1s∗l ′,m, tc

m, δ
}

, and the corre-
sponding lane-based arrival accumulations as model output,
i.e., y = 1al,m . The historical dataset can be expressed as
X = {x1, . . . , xN } and y = {y1, . . . , yN}, and the posterior
distribution over the space of parameters can be given by
Bayes’s theorem

p (ω|X, y) =
p ( y|X, ω) p (ω)

p ( y|X)
, (14)

where p ( y|X, ω) denotes the likelihood distribution by which
the model inputs, e.g., link-based arrival accumulations, gen-
erate the lane-based arrivals given parameter setting ω. Then,
we can estimate lane-based arrival accumulation given new
model inputs by integrating all likelihood generated from the
posterior distribution, i.e.,

p
(
ŷ|x̂, X, y

)
=

∫
p

(
ŷ|x̂, ω

)
p (ω|X, y) dω, (15)

where x̂ denotes the new model inputs, ŷ represents the
estimated lane-based arrival accumulation, and p

(
ŷ|x̂, ω

)
is

the likelihood.
3) Variational Inference and Parameter Update: It is

intractable to solve the posterior distribution of weights
p (ω|X, y) directly using Bayes theorem in Eq. (14). There-
fore, we use a variational weight distribution qθ (ω) to
approximate the actual posterior. The parameters of the varia-
tional weight distribution can be estimated by minimizing the
KL divergence between the variational distribution qθ (ω) and
the actual posterior p (ω|X, y), i.e.,

θ̂ = arg min
θ

KL (qθ (ω) ||p (ω|X, y))

= arg min
θ

∫
qθ (ω) log

qθ (ω)

p (ω) p ( y|X, ω)
dω

= arg min
θ

KL (qθ (ω) ||p (ω))− Eqθ (ω)

[
log p ( y|X, ω)

]
,

(16)

which is equivalent to minimizing negative Evidence Lower
Bound (ELBO)

KL
[
qθ (ω) ||p (ω)

]
−

N∑
i=1

∫
qθ (ω) log p

(
yi |fω (xi )

)
dωxi,

(17)

Fig. 3. Left: Classical neural network, each weight has a fixed value. Right:
Bayesian neural network, each weight is represented by a distribution.

where xi and yi denote the i sample in the training dataset,
and N represents the number of samples. In forward arrival
estimation, directly sampling the weights from the varia-
tional posterior distribution qθ (ω) will lose the corresponding
gradients that are essential in the backward parameter esti-
mation process. Therefore, to keep the gradient and reserve
the uncertainties of arrival estimation, we use the Gaussian
reparameterization trick. Specifically, the sampling process is
removed from the model structure, and the posterior weight
ω is generated using a parameter-free noise distribution ϵ ∼

N (0, I ), as shown in Fig. 4. The corresponding variational
posterior parameters θ = (µ, ρ) is expressed as

ω = t (θ, ϵ) = µ+ log (1+ exp (ρ)) ◦ ϵ, (18)

where ◦ is point-wise multiplication. According to the Lemma
1 in [32], the gradients with respect to the mean value and
standard deviation parameter of the variational distribution are
given as

∆µ =
∂ f (ω, θ)

∂ω
+

∂ f (ω, θ)

∂µ
, (19)

∆ρ =
∂ f (ω, θ)

∂ω

ϵ

1+ exp (−ρ)
+

∂ f (ω, θ)

∂ρ
, (20)

where f (ω, θ) = log qθ (w) − log p (w) p ( y|X, w). The
parameters of the variational distribution are updated as

µ← µ− α∆µ, (21)
ρ ← ρ − α∆ρ, (22)

where α denotes a learning rate.
4) Arrival Accumulation Estimation and Uncertainty Quan-

tification: Given the estimated variational posterior distri-
bution, the mean value and variance of estimated arrival
accumulation are derived by generating weight samples from
the variational distribution, i.e.,

E
[
ŷ
]
=

∫
p

(
ŷ|x̂, ω

)
qθ (ω) dω ≈

1
M

∑M

m=1
f ω̂m

(
x̂
)
,

(23)

Var
[
ŷ
]
=

1
M

∑M

m=1

[
f ω̂m

(
x̂
)]2
− E

[
ŷ
]2︸ ︷︷ ︸

epistemic lane choice uncertainty

+
1
M

∑M

m=1
σn

(
x̂
)

︸ ︷︷ ︸
aleatoric arrival uncertainty

, (24)
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Fig. 4. Illustration of the reparameterization trick.

where f ω̂m
(
x̂
)

is the estimated arrivals of BACL model for
the input x̂ using the generated weight ω̂m sample from the
variational posterior distribution qθ (ω), M is the number of
samples, ŷ = 1al,m,t , x̂ =

(
1s∗l ′,m,t , tc

m, δ
)

.

C. Historical and Real-Time Arrival Curve Reconstruction

The historical Arrival Curve Reconstruction (ACR) aims to
estimate the lane-based cumulative arrival index of historical
unmatched vehicles, while the real-time ACR seeks to estimate
the lane-based cumulative arrival index of real-time arriving
vehicles.

1) Historical ACR: The first step in historical ACR is to
determine the time range of reconstructed curves, which is
defined as the range between the arriving time of two adjacent
matched vehicles, i.e.,

Tm = (tm, tm+1
]
, m = 1, 2, . . . , Ml − 1, (25)

where Tm is the m reconstructed time range of the arrival
curves. Based on Eq. (23), we can obtain the mean estimation
of arrival accumulations 1âl,m,t . The two adjacent matched
vehicles provide boundary constraints that limit the up value
of estimated arrival accumulations. The estimated lane-based
arrival accumulations within the range Tm must equal the
observed one, which is calculated in Eq. (11). For each
reconstructed area Tm , we introduced a modified factor to
incorporate the boundary constraint into the estimation of
arrival accumulations, i.e.,

λm =
1a∗l,m
1âl,m,t

, (26)

where 1âl,m,t is the estimated arrival accumulation. The Eq.
(4) can be written as

Al,t = A∗l,tm + λm ·1âl,m,t . (27)

The pseudocode of historical ACR is presented in Algorithm 1.
2) Real-Time ACR: In real-time reconstruction, the real-

time link-based arrival accumulations after the newest matched
vehicle M can be obtained from observed lane-based departure
curves using real-time LPR data

1s∗l ′,M,t = D∗l ′,t − D∗l ′,tM
, (28)

where D∗l ′,t and D∗l ′,tM
are the observed cumulative departure

indices of lane-based departure curves at time t and tM . Based
on the real-time link-based arrivals, we can estimate the mean
and variance of real-time lane-based arrival accumulations

Algorithm 1 Historical Lane-Based Arrival Curve Reconstruc-
tion
Input: The historical LPR data set, signal timing;
Output: The historical arrival curve Al (t) , t < tM ;

1: Extract lane-based cumulative arrival index of matched
vehicle observations A∗l,m, m = 1, 2, . . . , Ml − 1 using
Eq. (3)

2: for m=1:Ml -1 do
3: Select the m matched vehicle as a reference;
4: for t in range (tm, tm+1

]
do

5: Calculate the reconstructed time span δ = t − tm ;
6: Calculate the link-based arrival accumulations

merged from different upstream lanes via Eq. (8);

7: Estimate the mean value and variance of the esti-
mated lane-based arrival accumulations 1âl,m,t via
Eq. (10), Eq. (23), and Eq. (24);

8: Modify the mean estimated arrival accumulation and
estimate the lane-based cumulative arrival index of
unmatched vehicles via Eq. (27);

9: end for
10: end for

using the trained BACL via Eq. (23) and Eq. (24), and the
real-time arrival curve reconstruction can be expressed as

Al,t = A∗l,tM
+1âl,M,t , (29)

where A∗l,tM
is the lane-based cumulative arrival index of the

newest matched vehicle, 1âl,M,t is the mean estimation of
real-time lane-based arrival accumulation using trained BACL.
The pseudocode of real-time ACR using real-time LPR data
is presented in Algorithm 2.

For practical applications, the real-time cumulative arrival
curve can be applied to real-time lane-based vehicle count
estimation. Specifically, given the estimated real-time lane-
based arrival curve Al (t), the real-time lane-based vehicle
count Gl(t) can be determined as

Gl (t) = Al (t)− D∗l (t) , (30)

where D∗l (t) is the lane-based downstream departure curve.
We present the estimation examples of real-time lane-based
vehicle count estimation in subsection V-C.

V. EXPERIMENTS

In this section, we evaluate our proposed method on a
real-world LPR dataset. We introduce the test site, baseline
methods, and evaluation metrics in subsection V-A. The
historical arrival curve reconstruction model performances
are evaluated in subsection V-B. The real-time estimation
performances of lane-based arrival curves and vehicle counts
are assessed in subsection V-C. Finally, we inspect the model
performance using different utilization levels of LPR data in
subsection V-D.

A. Experimental Settings

1) Test Site Description: In field experiments, we select
two adjacent intersections and the connecting link on Qianjing
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Algorithm 2 Real-Time Lane-Based Arrival Curve Recon-
struction
Input: The real-time LPR data set, signal timing;
Output: The real-time arrival curve Al (t) , t > tM ;

1: Extract the lane-based cumulative arrival index of the
newest matched vehicle A∗l,M using Eq. (3);

2: Select the newest matched vehicle M as a reference;
3: while No new matched vehicle update do
4: Select the reconstructed timestamp t = tcurrent ;
5: Calculate the reconstructed time span δ = t − tM ;
6: Calculate the link-based arrival accumulations merged

from different upstream lanes via Eq. (28);
7: Estimate the mean value and variance of the estimated

lane-based arrival accumulations 1âl,M,t via Eq. (10),
Eq. (23), and Eq. (24);

8: Obtain the real-time lane-based arrival curve Al(t) via
Eq. (29);

9: end while

Fig. 5. Visualization of the test site layout and signal timing.

Road in Kunshan, Jiangsu Province, China as our test sites.
As shown in Fig. 5, the LPR data are collected at the upstream
and downstream intersections from June 4th to June 8th, 2018,
spanning a total of five days. The evaluation includes three
traffic scenarios, each lasting 15 minutes: the morning peak
(AP) from 8:15 to 8:30 AM, the off-peak (OP) from 2:15 to
2:30 PM, and the evening peak (PP) from 5:15 to 5:30 PM.
Three of four downstream lanes are selected as test lanes:
the left-turn lane (LT), through lane 1 (TH1), and lane 2
(TH2). Three of the five days’ data are used to learn the arrival
curves, while the data from the remaining two days are served
for evaluating the reconstruction of arrival curves. The LPR
sensors at the test site did not work well and the matching
rate of LPR data is 61.6% on average. Additional video data
are also collected to fix unrecognized vehicle license plates,
improving the matching rate to 97.8%. This corrected dataset
is used to provide ground truth for model validation.

2) Benchmark Method: We compared the proposed
Bayesian method with the State-Of-The-Art (SOTA) proba-
bilistic and deterministic methods.
• AF-GP (Arrival Function-based Gaussian Process [22],

[23]): A customized Gaussian process for arrival curve
reconstruction, in which a customized mean function is
calibrated by two-stage cyclic arrival rates to capture
arrival patterns and a covariance function is developed to
characterize arrival uncertainties. The arrival curves are
reconstructed by inferring the cumulative arrival indices
of unmatched vehicles using the AF-GP model based on
matched vehicles.

• LC-NN (Lane Choice-based Feedforward Neural Net-
work): A plain neural network that reconstructs the
arrivals curves based on lane choice learning, using
matched vehicles and real-time link-base arrivals. The
LC-NN is used for comparison to demonstrate the supe-
rior performance of the Bayesian approach in modeling
lane choice uncertainty.

3) Evaluation Metrics: To assess the arrival curve recon-
struction performance, we employ a deterministic metric Root
Mean Square Error (RMSE) and a probabilistic metric Con-
tinuous Ranked Probability Score (CRPS). The metric RMSE
is used to evaluate the mean estimation of cumulative arrivals

RMSE =

√
1
n

∑n

i=1

(
a∗i − ai

)2
, (31)

where a∗i and ai represent the actual value and estimated mean
value of the i th unobserved cumulative arrivals, respectively.

In addition to the deterministic RMSE, the CRPS is
employed to serve as a probabilistic evaluation of the esti-
mated arrival distribution, reflecting both the accuracy of the
mean estimation and the appropriateness of the uncertainty
quantification

CRPS =

∞∫
−∞

(
F (a)− H

(
a − a∗

))2 da, (32)

where F(a) is the cumulative distribution function (CDF) of
the estimated distribution, a∗ is the observed value, H is the
Heaviside step function, i.e., 0 for a < a∗ and 1 for a ⩾ a∗.
A lower CRPS value indicates that the distribution estimate is
closer to the actual observed value.

B. Historical Arrival Curve Reconstruction Results

To evaluate the model performance of historical arrival
curve reconstruction (ACR) from both deterministic and prob-
abilistic perspectives, we summarize the average RMSEs and
CRPSs (including standard deviations) across various LPR
data matching rates in Tab. I and Tab. II. The metrics are
calculated using testing data spanning nine scenarios (3 test-
ing lanes × 3 testing periods). The proposed BACL model
consistently outperforms the baseline methods across diverse
matching rates. Tab. I shows that the RMSEs for interpolation-
based AF-GP remain relatively stable when matching rates
(MRs) exceed 40%, but they increase significantly, with larger
standard deviations, at MRs below 20%.
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Fig. 6. Historical arrival curve reconstruction examples with mean estimates and uncertainty characterization.

In contrast, the lane choice-based neural network (LC-
NN) and proposed BACL, which utilize link-based arrival
information, display stable RMSEs with small variance even
at low MRs. This stability suggests the effectiveness of the
lane choice-based learning mechanism in reconstructing arrival
curves. By comparing the BACL with LC-NN, it can be seen
that while the LC-NN performs competitively with the BACL
at high matching rates, the LC-NN’s RMSE increases dramat-
ically in low matching rates scenarios where the uncertainties
of lane choices are even higher, highlighting the value of
proposed Bayesian deep learning approach.

By comparing the probabilistic CRPSs of the baseline and
proposed method in Tab. II, we can observe that the CRPSs
of AF-GP increase sharply in low MRs, while those for
BACL remain robust with smaller variance. This consistency
indicates that the estimated arrival distributions from BACL
more closely align with the actual values, demonstrating the
superiority of the proposed Bayesian deep learning approach
in capturing lane choice and arrival uncertainties.

To vividly demonstrate the ACR performance, we visualize
nine examples from three downstream lanes during PM peak
hours across three matching rates (MRs) of 50%, 30%, and
10%, shown in Fig. 6. The green dashed lines and filled
areas represent the BACL’s estimated arrival mean values

Fig. 7. The RMSE and CRPS distribution of real-time arrival curve
reconstruction under various matching rates.

and uncertainties, respectively. It can be seen that the BACL
consistently offers accurate and reliable reconstruction results
with reasonable uncertainty characterization. In the medium
and low MR scenarios, e.g., Fig. 6(a), (d), (g), the BACL’s
mean estimates closely align with the ground truth arrival
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Fig. 8. Real-time lane-based vehicle count estimation examples.

TABLE I
AVERAGE RMSES WITH STANDARD DEVIATIONS OF HISTORICAL ACR

UNDER VARIOUS MATCHING RATES

TABLE II
AVERAGE CRPSS WITH STANDARD DEVIATIONS OF HISTORICAL ACR

UNDER VARIOUS MATCHING RATES

curves. With relatively sufficient observations, the associated
uncertainty estimates are small and trend consistently with the
mean estimates. In scenarios with extremely low MRs, e.g.,

Fig. 6(c), (f), (i), the mean estimates may slightly diverge from
the ground truth. However, the accompanying uncertainty (pri-
marily lane choice uncertainty) estimates enhance reliability,
ensuring the results remain robust even with limited data.

C. Real-Time Arrival Curve Reconstruction Results

To assess the real-time reconstruction performance, we dis-
play the distributions of RMSE and CRPS under various
matching rates, as shown in Fig. 7. For each matching rate,
experiments are repeated 20 times. The links connecting the
boxplot centers represent the median values of RMSEs and
CRPSs. Compared to the historical reconstruction results in
Tab. I and Tab. II, the RMSEs and CRPSs for real-time
reconstruction are even higher. This increase is attributed to the
historical reconstructions benefiting from bilateral boundary
constraints, e.g., the adjacent matched vehicles illustrated in
Fig. 1(b). Also, the estimation span is usually smaller than the
update time of matching vehicles, e.g., 31s∼141s. In contrast,
the real-time reconstruction faces more stringent challenges
with only unilateral boundary constraints (e.g., the newest
matched vehicle), and the estimation span is typically larger
than the vehicle link travel time, e.g., 265s∼437s. Despite
numerical differences, the RMSE and CRPS metrics exhibit
consistent trends across varying matching rates. As the match-
ing rates increase, the values of both metrics improve, showing
decreased values and smaller variances. This improvement is
due to higher matching rates bringing the estimation span
closer to the vehicle link travel time, therefore reducing the
lane choice uncertainties associated with link-based arrivals.
Compared to the deterministic RMSE, the variances of prob-
abilistic CRPSs are even lower at the same matching rates,
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TABLE III
SIGNIFICANCE OF INPUT FEATURES

indicating the reliability of our approach in quantifying lane
choice uncertainties.

To further show the real-time arrival reconstruction perfor-
mance, we visualize nine real-time lane-based vehicle count
estimation examples from three lanes during three testing peri-
ods under 50% matching rates, as shown in Fig. 8. Overall, the
BACL provides accurate lane-based vehicle count estimates
with reliable uncertainties, indicating the superiority of the
proposed BACL in estimating real-time operational metrics.

D. Significance of Different Input Features

To examine the significance of input features, two additional
BACL models are configured using different levels of LPR
data features in Tab. III. First, in the w/o link arrivals setting,
the link-based arrivals input is removed in the BACL model,
making it challenging to learn the lane choices from link-based
arrivals to lane-based arrivals. As a result, the model degrades
sharply across various matching rates, implying the importance
of incorporating link-based arrival data. Second, the w/o lane
vector setting uses aggregated link-based arrivals instead of a
detailed vector input that contains upstream lane information.
Interestingly, in scenarios with low MRs, this simplification
results in lower RMSEs. The reduced complexity of this model
variant requires fewer parameters, making it more suitable for
conditions with limited data.

VI. CONCLUSION

In this study, a Bayesian deep learning approach is devel-
oped to reconstruct real-time lane-based traffic arrival curves
using LPR data. Targeting real-time reconstruction, a lane
choice learning process is designed to effectively capture
the relationship between link-based arrivals and lane-specific
arrivals. Moreover, the lane choice uncertainties are char-
acterized using Bayesian parameter inference techniques,
minimizing the arrival curve reconstruction uncertainties.
Extensive experiment results demonstrate the superiority and
necessity of lane choice modeling in reconstructing historical
and real-time lane-based arrival curves.

There are several future directions to advance this study.
First, the same matching rates of LPR data are used in
the arrival curve learning and reconstruction stages. It is
practically meaningful to test the model performance with
different matching rates at the two stages because the matching
rate in reality is not stationary due to equipment aging or
maintenance. Second, it is possible to extend the proposed

link-level model to a network-scale traffic arrival acquisition
model, in which the proposed model can serve as a sub-module
to obtain link-level traffic demand.

REFERENCES

[1] D. Ni, Traffic Flow Theory: Characteristics, Experimental Methods,
and Numerical Techniques. Amsterdam, The Netherlands: Butterworth-
Heinemann, 2015.

[2] C. An, X. Guo, R. Hong, Z. Lu, and J. Xia, “Lane-based traffic arrival
pattern estimation using license plate recognition data,” IEEE Intell.
Transp. Syst. Mag., vol. 14, no. 4, pp. 133–144, Jul. 2022.

[3] M. Li, J. Tang, Q. Chen, and Y. Liu, “Traffic arrival pattern estimation
at urban intersection using license plate recognition data,” Phys. A, Stat.
Mech. Appl., vol. 625, Sep. 2023, Art. no. 128995.

[4] C. An, Y. He, J. Lu, Z. Lu, and J. Xia, “One-stage estimation of cyclic
arrival rates using license plate recognition data,” J. Intell. Transp. Syst.,
pp. 1–14, Aug. 2024, doi: 10.1080/15472450.2024.2392720.

[5] J. Zheng and H. X. Liu, “Estimating traffic volumes for signalized
intersections using connected vehicle data,” Transp. Res. C, Emerg.
Technol., vol. 79, pp. 347–362, Jun. 2017.

[6] C. An, Y.-J. Wu, J. Xia, and W. Huang, “Real-time queue length esti-
mation using event-based advance detector data,” J. Intell. Transp. Syst.,
vol. 22, no. 4, pp. 277–290, Jul. 2018.

[7] S. Lee, K. Xie, D. Ngoduy, and M. Keyvan-Ekbatani, “An advanced deep
learning approach to real-time estimation of lane-based queue lengths
at a signalized junction,” Transp. Res. C, Emerg. Technol., vol. 109,
pp. 117–136, Dec. 2019.

[8] H. Wu, L. Luo, T. Oguchi, K. Tang, and H. Zhu, “Stochastic queue
profile estimation using license plate recognition data,” Phys. A, Stat.
Mech. Appl., vol. 643, Jun. 2024, Art. no. 129790.

[9] L. Li, W. Huang, and H. K. Lo, “Adaptive coordinated traffic control for
stochastic demand,” Transp. Res. C, Emerg. Technol., vol. 88, pp. 31–51,
Mar. 2018.

[10] Z. Yao, L. Shen, R. Liu, Y. Jiang, and X. Yang, “A dynamic predictive
traffic signal control framework in a cross-sectional vehicle infrastructure
integration environment,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 4,
pp. 1455–1466, Apr. 2020.

[11] Z. Xu et al., “Trajectory optimization for a connected automated traffic
stream: Comparison between an exact model and fast heuristics,” IEEE
Trans. Intell. Transp. Syst., vol. 22, no. 5, pp. 2969–2978, May 2021.

[12] Z. Yao, H. Jiang, Y. Cheng, Y. Jiang, and B. Ran, “Integrated sched-
ule and trajectory optimization for connected automated vehicles in
a conflict zone,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 3,
pp. 1841–1851, Mar. 2022.

[13] E. Amini, A. Omidvar, and L. Elefteriadou, “Optimizing operations at
freeway weaves with connected and automated vehicles,” Transp. Res.
C, Emerg. Technol., vol. 126, May 2021, Art. no. 103072.

[14] N. Dobrota, A. Stevanovic, and N. Mitrovic, “A novel model to jointly
estimate delay and arrival patterns by using high-resolution signal
and detection data,” Transportmetrica A, Transp. Sci., vol. 20, no. 1,
pp. 1–33, Jan. 2024.

[15] C. Tan, J. Yao, X. Ban, and K. Tang, “Cumulative flow diagram
estimation and prediction based on sampled vehicle trajectories at
signalized intersections,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8,
pp. 11325–11337, Aug. 2022.

[16] X. Luo, D. Ma, S. Jin, Y. Gong, and D. Wang, “Queue length estimation
for signalized intersections using license plate recognition data,” IEEE
Intell. Transp. Syst. Mag., vol. 11, no. 3, pp. 209–220, Fall 2019.

[17] K. Tang, H. Wu, J. Yao, C. Tan, and Y. Ji, “Lane-based queue length
estimation at signalized intersections using single-section license plate
recognition data,” Transportmetrica B, Transp. Dyn., vol. 10, no. 1,
pp. 293–311, Dec. 2022.

[18] W. Shao and L. Chen, “License plate recognition data-based traffic
volume estimation using collaborative tensor decomposition,” IEEE
Trans. Intell. Transp. Syst., vol. 19, no. 11, pp. 3439–3448, Nov. 2018.

[19] W. Rao, Y.-J. Wu, J. Xia, J. Ou, and R. Kluger, “Origin-destination
pattern estimation based on trajectory reconstruction using automatic
license plate recognition data,” Transp. Res. C, Emerg. Technol., vol. 95,
pp. 29–46, Oct. 2018.

[20] B. Mo, R. Li, and J. Dai, “Estimating dynamic origin–destination
demand: A hybrid framework using license plate recognition data,”
Comput.-Aided Civil Infrastruct. Eng., vol. 35, no. 7, pp. 734–752, 2020.

[21] W. Yao, M. Zhang, S. Jin, and D. Ma, “Understanding vehicles com-
muting pattern based on license plate recognition data,” Transp. Res. C,
Emerg. Technol., vol. 128, Jul. 2021, Art. no. 103142.

Authorized licensed use limited to: University of Arizona. Downloaded on May 15,2025 at 21:02:59 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1080/15472450.2024.2392720


672 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 26, NO. 1, JANUARY 2025

[22] X. Zhan, R. Li, and S. V. Ukkusuri, “Lane-based real-time queue length
estimation using license plate recognition data,” Transp. Res. C, Emerg.
Technol., vol. 57, pp. 85–102, Aug. 2015.

[23] B. Mo, R. Li, and X. Zhan, “Speed profile estimation using license plate
recognition data,” Transp. Res. C, Emerg. Technol., vol. 82, pp. 358–378,
Sep. 2017.

[24] C. M. Day et al., “Evaluation of arterial signal coordination: Method-
ologies for visualizing high-resolution event data and measuring travel
time,” Transp. Res. Rec., J. Transp. Res. Board, vol. 2192, no. 1,
pp. 37–49, Jan. 2010.

[25] J. Zheng, H. X. Liu, S. Misgen, K. Schwartz, B. Green, and
M. Anderson, “Use of event-based traffic data in generating time–space
diagrams for evaluation of signal coordination,” Transp. Res. Rec., J.
Transp. Res. Board, vol. 2439, no. 1, pp. 94–104, Jan. 2014.

[26] X. Zhan, Y. Zheng, X. Yi, and S. V. Ukkusuri, “Citywide traffic volume
estimation using trajectory data,” IEEE Trans. Knowl. Data Eng., vol. 29,
no. 2, pp. 272–285, Feb. 2017.

[27] Y. Zhao, J. Zheng, W. Wong, X. Wang, Y. Meng, and H. X. Liu,
“Various methods for queue length and traffic volume estimation using
probe vehicle trajectories,” Transp. Res. C, Emerg. Technol., vol. 107,
pp. 70–91, Oct. 2019.

[28] P. Hao, Z. Sun, X. J. Ban, D. Guo, and Q. Ji, “Vehicle index estimation
for signalized intersections using sample travel times,” Transp. Res. C,
Emerg. Technol., vol. 36, pp. 513–529, Nov. 2013.

[29] H. Zhang, H. X. Liu, P. Chen, G. Yu, and Y. Wang, “Cycle-based end of
queue estimation at signalized intersections using low-penetration-rate
vehicle trajectories,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 8,
pp. 3257–3272, Aug. 2020.

[30] F. Li, K. Tang, J. Yao, and K. Li, “Real-time queue length estimation
for signalized intersections using vehicle trajectory data,” Transp. Res.
Rec., J. Transp. Res. Board, vol. 2623, no. 1, pp. 49–59, Jan. 2017.

[31] Z. Wen and X. Weng, “Inferring the number of vehicles between
trajectory-observed vehicles,” J. Intell. Transp. Syst., vol. 28, no. 6,
pp. 816–829, Nov. 2024.

[32] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural network,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1613–1622.

Yang He received the B.E. degree in traffic engi-
neering from Chang’an University, Xi’an, China,
in 2020. He is currently pursuing the Ph.D. degree
with the Intelligent Transportation System Research
Center, Southeast University. His current research
interests include transportation network modeling,
traffic state estimation, and low-rank modeling.

Chengchuan An received the Ph.D. degree in trans-
portation engineering from Southeast University,
Nanjing, China, in 2019. From 2014 to 2016, he was
a Visiting Scholar with the Department of Civil
and Architectural Engineering and Mechanics, The
University of Arizona, USA. Since 2020, he has
been a Post-Doctoral Researcher with the Intelligent
Transportation System Research Center, Southeast
University. His current research interests include
intelligent traffic signal control systems and traffic
data mining.

Jiawei Lu received the Ph.D. degree in transporta-
tion engineering from Arizona State University in
2022. He is currently a Post-Doctoral Fellow with
the H. Milton Stewart School of Industrial and Sys-
tems Engineering, Georgia Institute of Technology.
His research interests include transportation network
modeling, traffic simulation, and distributed traffic
control.

Yao-Jan Wu is a Professor in transportation engi-
neering with the Civil and Architectural Engineering
and Mechanics Department and the Executive
(Founding) Director of the Center for Applied
Transportation Sciences (CATS), The University of
Arizona (UA). He has authored or co-authored
over 160 refereed publications, including more than
80 journal articles, and has presented his research
findings at more than 100 national and international
conferences and invited speaker events. His research
focuses on a strong connection between information

technology (IT) and traditional transportation research.

Zhenbo Lu received the Ph.D. degree in traffic
information engineering and control from Southeast
University, Nanjing, China, in 2011. He is cur-
rently an Associate Professor with the Intelligent
Transportation System Research Center, Southeast
University. His research interests include transporta-
tion planning, traffic simulation, and intelligent
transportation systems.

Jingxin Xia received the Ph.D. degree in transporta-
tion engineering from the University of Kentucky,
USA, in 2006. He is currently a Professor with the
Intelligent Transportation System Research Center,
Southeast University, Nanjing, China. He has pub-
lished more than 40 peer-reviewed articles so far. His
research interests include traffic flow theory, trans-
portation network modeling, traffic signal control,
and intelligent transportation systems.

Authorized licensed use limited to: University of Arizona. Downloaded on May 15,2025 at 21:02:59 UTC from IEEE Xplore.  Restrictions apply. 


