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Abstract
Left-turn vehicles’ intersection entry speeds are critical in determining yellow and red clearance intervals. The signal timing
design guidelines recommend collecting the left-turn entry speed or estimating it based on the speed limit. Estimations based
on speed limits have generally been effective but can result in over- or underestimations at intersections with varying geo-
metric characteristics. It is critical for agencies to identify geometric characteristics that could influence left-turning vehicles’
entry speeds. This awareness could inform decision making by pinpointing intersections requiring field data collection to esti-
mate yellow and clearance intervals instead of estimation based on the speed limit. This paper aims to evaluate geometric
characteristics influencing left-turning vehicle speeds. This study examined left-turning speeds at 60 signalized intersections in
Tucson, Arizona. Crowdsourced trajectory data offer a cost-effective and scalable approach to capturing real-world driving
behavior, making them particularly valuable for large-scale safety and operations studies. Ordinary least squares (OLS) and
quantile regression models were used to analyze speed profiles and the influence of various factors. Findings revealed that
the number of left-turn lanes, medians, and the width of the left-turn lane affect entry, mid-maneuver, and exit speeds for
movements impeded by traffic queues at intersections. These results emphasize the importance of considering intersection
geometry and speed limit during signal timing design. Future research could explore the impact of other vehicles, signal timing
phases, demographic characteristics, and vehicle classifications to deepen our understanding of driver behavior in left-turn
movements, thereby improving intersection design and traffic management strategies.
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The computation of traffic signal intervals, particularly
yellow and red clearance intervals, has long been a com-
plex issue for practitioners because of factors such as
driver comfort, perception, and regulatory interpreta-
tion. While various publications offer guidance, there is
no nationally recognized standard for determining the
length of change intervals. Key resources, such as the
Institute of Transportation Engineers (ITE) Traffic
Engineering Handbook and the Manual on Uniform
Traffic Control Devices (MUTCD) provide valuable rec-
ommendations. The ITE suggests using kinematic equa-
tions to calculate yellow and red clearance intervals.
Determination of yellow and red clearance intervals
based on the kinematic equation requires several para-
meters, including perception-reaction time, the 85th

percentile of approach speed, and approach grade. While
some of these parameters could be considered globally,
other critical parameters, such as the intersection left-
turn entry speed, require local values. The ITE 2020
Guidelines and NCHRP Report 731 recommend collect-
ing the left-turn entry speed data or estimating it based
on the speed limit (1, 2). The NCHRP Report suggests
that the 85th percentile speed for left-turning vehicles is
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estimated as the approach speed limit minus 5 mph (1).
The ITE 2020 guidelines recommend using the speed
limit as the 85th percentile approach speed for left-turn
movements and 20mph as the intersection entry speed
for left-turn movements (2–4). In 2022, Jerome et al.
assessed the extended kinematic equation proposed by
the ITE 2020 guidelines for estimating yellow intervals
for left-turn movements. Their analysis, based on 262
real-world trajectories of free-flowing left-turning vehi-
cles, suggested that the equation tends to overestimate
the required yellow interval. This overestimation occurs
because the critical distance is effectively reduced when
left-turning vehicles begin decelerating before reaching
the braking point, and the average traversing speed
remains higher as a result of vehicles decelerating at
moderate rates rather than the maximum rate assumed
in the equation. Despite these findings, the study faced
limitations, including its exclusive focus on free-flowing
vehicles, which does not account for impeded traffic con-
ditions. Additionally, the results were derived from a lim-
ited number of study sites, raising concerns about their
applicability to other intersection types (5).

Estimations based on speed limits have generally been
effective but can result in over- or underestimations at
intersections with varying geometric characteristics, such
as dual left-turn lanes, longer turning radii, and wider
intersections. There is evidence that factors such as inter-
section geometry, drivers’ instinctive judgments, and
their targeted exit lanes cause significant variations in the
paths and speeds of left-turning vehicles (6, 7). For exam-
ple, while Dias et al. (2020) found that minimum speeds
were similar across various curve radii, the standard
deviations of speed increased with larger intersection
angles (6). It is critical for agencies to identify geometric
characteristics that could influence the left-turning vehi-
cles’ entry speeds. This awareness could inform decision
making by pinpointing intersections requiring field data
collection to estimate clearance intervals instead of esti-
mation based on the speed limit.

Collecting field speed data helps avoid the estimation
of the entry speed based on kinematic equations and the
speed limit. However, the challenges for most agencies in
collecting speed data are the cost, time, and scalability. It
is difficult for most agencies to collect data for several
intersections in the network to determine the yellow
interval using radar guns or video-based sensors. For
example, using radar guns, Yu et al. (2004) collected data
on only 19 intersections with speed limits ranging from
40 to 55mph and 125 vehicle trajectories (8). The
advances in the availability of crowdsourced trajectory
data could reduce the cost and simplify the scalability of
the yellow and red clearance interval estimation.
Moreover, the availability of a considerable data set
could help develop models that could be used to predict

the traffic entrance speeds based on geometric character-
istics and applied in areas that lack the means and funds
to acquire the crowdsourced data.

This paper uses crowdsourced trajectory data to eval-
uate geometric characteristics at signalized intersections
influencing left-turning vehicle speeds. Also, the study
demonstrates the applicability of the crowdsourced tra-
jectory data in determining the left-turn entry speed.
While the main focus is on entry speed, this research aims
to assist agencies in understanding and estimating the
speed profile of left-turning movements by including the
analysis of speeds during the middle of the left-turning
maneuver and when exiting the intersection after execut-
ing the left-turn maneuver. The left-turning vehicles’
speed information at signalized intersections could be
used in other areas, including realistic representation of
surrounding vehicle movements in driving simulators,
virtual reality applications, and microscopic simulation
tools.

Literature Review

Previous research has extensively explored the trajec-
tories of turning movements. Abdeljaber et al. (2020)
manually extracted 44 trajectories of free-flowing vehicles
from recorded video at a signalized intersection in Qatar.
Results indicated that the characteristics of these paths
were significantly influenced by a vehicle’s entry speed,
minimum speed during the turn, and the lateral distance
between the exit point and the curb. Approximately 70%
of drivers preferred the middle lane when exiting the
intersection. This study suggested that the speed para-
meters can indicate driver aggressiveness, and that both
driver behavior and the chosen exit lane affect the turn-
ing vehicle’s trajectory (9). Dias et al. (2020) investigated
left- and right-turn trajectories under free-flow conditions
in left-hand traffic. It was found that while the curve
radius does not affect average speed and variation, accel-
erations are sensitive to it. Additionally, vehicle paths
become less varied as the intersection angle increases, the
trajectories shift inward as the exit speed decreases, and
vehicle paths move toward the inner corner of the turn
with decreasing entry acceleration (6).

Fitzpatrick et al. (2021) video recorded the speeds of
4,394 right-turning vehicles at 31 urban signalized inter-
section approaches in Texas. A log-normal model was
developed to predict right-turn speeds based on various
site characteristics, including curb radius, leading head-
way, vehicle type (car versus truck), maneuver of the pre-
ceding vehicle (through versus right turn), and signal
indication (yellow or green). The analysis provided
strong evidence that right-turning speed is influenced by
the corner radius: larger radii correspond to higher turn-
ing speeds. Also, right-turn speeds tend to increase
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slightly when the preceding vehicle goes straight through
the intersection, or when the signal indication is yellow
rather than green. The study revealed that the calculated
85th percentile turning speed is generally higher than the
assumed speed derived from the radius of curvature
equation, and confirmed that trucks turn more slowly
than cars (10).

Dolatalizadeh et al. (2020) examined driver behavior
during left-turning movements at unsignalized intersec-
tions. Using data from 353 left-turning vehicles collected
via a fixed digital camera, vehicle speed profiles were
categorized into three types based on their descending
and ascending patterns. Key findings include the influ-
ence of initial speed and exposure on the speed profile.
Vehicles with left exposure at intersections showed a ten-
dency for an initial descending slope followed by an
ascending slope in the speed profile. For vehicles with
high initial speeds, drivers typically maintained a
smoother speed profile with slight descending and
ascending trends. Conversely, vehicles with low initial
speeds and fewer exposures often had consistently
ascending speed profiles (11). Wolfermann et al. evalu-
ated the speed profiles of right- and left-turning vehicles
at signalized intersections by manually tracking vehicle
positions and times from video recordings, analyzed
using the TrafficAnalyzer image processing program.
The study tracked 117 vehicles across 18 approaches and
used regression models to analyze speed, acceleration,
and jerk profiles. Results demonstrated that speed pro-
files are sensitive to intersection layout, including the
approach angle, curb radius, and position of the hard
nose (7).

Laureshyn et al. (2009) classified the speed profiles of
left-turning vehicles at a signalized intersection using pat-
tern recognition techniques such as cluster analysis,
supervised learning, and dimension reduction. Three
traffic scenarios were identified: no oncoming traffic,
yielding to oncoming vehicles, and yielding to pedes-
trians. The findings confirmed the efficacy of pattern rec-
ognition techniques in classifying speed profiles (12).
Alhajyaseen et al. (2013) studied the trajectory distribu-
tion of turning vehicles as a function of intersection geo-
metry, vehicle type, and speed. Alhajyaseen et al. (2013)
found that the paths of right-turning vehicles in left-hand
traffic were more sensitive to vehicle speed and turning
angle, whereas left-turning vehicle paths were more influ-
enced by the intersection corner radius, turning angle,
and vehicle speed (13).

While several studies investigated turning vehicles’
trajectory and speed profiles, most have focused on
individual vehicle paths and recognition, often within
left-hand traffic scenarios. Furthermore, these studies
frequently examined turning vehicles under free-flow
conditions, without interactions with other road users.

There is also a notable lack of research conducted in
the United States, where signalized intersections have
unique operational characteristics. This gap under-
scores the need for further research on typical U.S. sig-
nalized intersections. This study addresses this gap by
employing a quantile regression modeling approach on
crowdsourced trajectory data from 32,884 left-turning
vehicles at 60 signalized intersections in Tucson,
Arizona. The findings will provide transportation agen-
cies with a deeper understanding of the factors influen-
cing the speed profiles of left-turning vehicles, aiding in
establishing parameters needed for effective signal tim-
ing design.

The paper is organized as follows: the next section
outlines the selection of study sites. This is followed by a
detailed description of the data collection and processing
procedures, including the identification of left-turning
vehicles, speed data collection, and the geometric charac-
teristics of intersections. The subsequent section presents
the modeling approach and analysis of the results.
Finally, the study concludes by discussing the findings
and their broader implications. Figure 1 provides a flow
chart illustrating this study’s overall structure and
process.

Study Sites

This study sought to identify geometric characteristics
influencing left-turning vehicle speeds and how the
entrance speeds vary at different positions at the inter-
section during the left-turning maneuver. Signalized
intersections in Tucson, Arizona served as the focus of
this analysis. A diverse set of intersections was selected
to ensure a comprehensive analysis incorporating a
wide range of geometric characteristics. Since the City
of Tucson manages more than 450 signalized intersec-
tions, crash experience was used as the primary selec-
tion criterion. This method allowed for the inclusion of
various intersection types while mitigating potential
biases that could arise from selecting sites based solely
on geometric attributes. For this study, 60 standard
four-way signalized intersections in Tucson, Arizona
were selected from a pool of more than 450 intersec-
tions after ranking them based on crash frequency and
severity. The top 20 intersections in the ranking (i.e.,
the most unsafe signalized intersections based on crash
frequency and severity), the lowest 20 intersections
(i.e., the safest signalized intersections based on crash
frequency and severity), and the middle 20 intersections
were selected, totaling 60 intersections. This selection
of study sites provided a balanced representation of
intersections with different levels of crash risk. Figure 2
shows the selected study sites.
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Data

Two data sets were used in this study including crowd-
sourced trajectory data and intersection geometric
characteristics data. The crowdsourced trajectory data
from WEJO were provided by the Pima Association of

Governments (PAG). The crowdsourced trajectory
data comprise individual vehicle waypoints reported
every 3 s, with a positional accuracy within a 5-ft
radius. Each waypoint includes attributes such as GPS
location, timestamp, speed, heading, and an anon-
ymous unique trajectory identifier. These crowdsourced
trajectory data have been previously used by Khadka
et al. (2022) to identify and analyze traffic congestion
on both freeways and arterials (14). Similarly, Islam
and Abdel-Aty (2023) employed crowdsourced trajec-
tory data to predict real-time conflicts, using historical
trajectory data of individual vehicles to assess potential
future conflicts (15).

The geometric characteristics of the intersections were
collected using Google Maps. The gathering of the geo-
metric characteristics involved a manual extraction of
these attributes, where a student used the measure tool to
get information or street view to collect variables, such
as the speed limit. These characteristics include the speed
limit (SL), the number of left-turn lanes (Nl), the presence
of a median for that approach (Median), the distance
required for a vehicle to traverse the intersection (WL),
the width of the approaching lane (WEntry), and the width
of the exit leg of the intersection (WExit). In addition, the
City of Tucson was consulted, and field visits were con-
ducted to verify that the information extracted from
Google Maps was accurate and accounted for any

Figure 1. Study flow chart.

Figure 2. Study sites in Tucson, Arizona.
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updates or modifications not yet reflected in Google
Maps.

Left-Turning Vehicle Trajectories Extraction

This study evaluated factors influencing left-turning
vehicle speeds. This section discusses the extraction of
left-turn vehicle speed profiles. Figure 3a displays all tra-
jectory data clipped for a specific intersection to identify
left-turn movements. The identification process for left-
turning movements involves three steps (16):

1. Retrieving trajectory waypoints near the intersec-
tion to acquire entry and exit vehicle headings.

2. Analyzing these headings to identify turning
movement clusters and boundaries.

3. Filtering entire trajectories assigned to a particu-
lar movement based on the distance traveled.

Figure 3b illustrates an example of identified east-
bound left-turn movement. The identification process
was applied to the selected 60 intersections using data
collected over 12 days in September and October 2021.
In total, 32,884 left-turn trajectories were extracted from
the data set.

In this study, left-turn movements were categorized as
impeded or unimpeded movements. Previous studies
analyzed primarily turning movements under free-flow
conditions, with ‘‘free-flow’’ meaning: a vehicle having a
minimum of 5-s leading headway and 3-s trailing head-
way (10), a passenger car’s entire tangent section ahead,
clear of other vehicles (17), and a vehicle without impacts
with other vehicles, pedestrians, or cyclists (6). Impeded
movements refer to left-turning maneuvers where the
speed profile of the left-turning vehicle experiences
delays because of conflicts with pedestrians, conflicting

approach traffic, or left-turn queues. Conversely, unim-
peded movements are those speed profiles where the
vehicle completes the left turn without stopping for
queues or conflicts with pedestrians and crossing traffic.
Figure 4a presents examples of unimpeded left-turning
vehicles, while Figure 4b illustrates examples of impeded
left-turning movements.

Key Speed Profile Trajectory Points Identification

Speed values were gathered at three key points: at the
entry of the intersection therefore named intersection
entry speed (VEntry); at the middle of the left-turning man-
euver therefore named intersection mid-maneuver speed
(VM ); and at the exit of the intersection therefore named
intersection exit speed (VExit). Intersection entry speed
(VEntry) is defined as the speed of the vehicle at or very
close to the stop bar. Intersection exit speed (VExit) is
defined as the speed of the vehicle as it exits the intersec-
tion and enters the adjacent leg. Mid-maneuver speed
(VM ) is the speed of the vehicle between the entry and exit
points. Additionally, for the vehicle’s speed, two time-
stamps are taken, one before the entry speed is recorded
and one after the exit speed is recorded. These are inter-
section pre-entry speed (VPre�Entry) and intersection post-
exit speed (VPost�Exit), respectively.

Descriptive Statistics

This study collected key variables for vehicles making a
left-turning maneuver: intersection entry speed, intersec-
tion mid-maneuver speed, and intersection exit speed.
Figure 5 and Table 1 presents a summary of the statistics
for the collected data, divided into two sections: one
encompassing the entire data set, which includes both
impeded and unimpeded movements; and the other

Figure 3. (a) All trajectory data for a specific intersection; and (b) example of identified eastbound left-turn movement.
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focusing solely on unimpeded movements. Figure 5 illus-
trates the distribution of left-turning vehicle speeds for
both left-turn movements and unimpeded-only move-
ments, highlighting the median and 85th percentile
speeds. For all left-turn movements, the pre-entry and
entry speed distributions are right-skewed, reflecting var-
iations and reduced speeds resulting from impeded move-
ments. Specifically, for all left-turn movements, the
median and 85th percentile speeds for pre-entry are

2.1mph and 4.3mph, and for entry speeds, they are
5.7mph and 15mph, respectively.

In contrast, the distribution of pre-entry and entry
speeds for unimpeded movements differs, showing
higher values. For unimpeded movements only, the
median and 85th percentile speeds are significantly
higher, with pre-entry speeds at 28.6mph and 35.1mph
and entry speeds at 20.8mph and 25.8mph, respec-
tively. The exit and post-exit speed distributions are

Figure 4. Examples of left-turning movements from trajectory points: (a) unimpeded left turn; and (b) impeded left turn.
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Figure 5. Distribution of and summary of left-turning vehicle speeds.
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similar for both all left-turn movements and
unimpeded-only movements, but the median and 85th
percentile values tend to be higher for unimpeded
movements. Specifically, the median and 85th percen-
tile for exit speeds are 17.9mph and 21.5mph for all
left-turn movements, compared with 18.6mph and
22.2mph for unimpeded movements. For post-exit
speeds, the values are 26.5mph and 30.8mph for all
movements, while for unimpeded-only movements,
they are 25.8mph and 30.8mph.

Yu et al. (2003) identified the top 10 parameters influen-
cing yellow change and red clearance intervals for left-turn
movements, based on a survey of researchers, practitioners,
and executives. Among the top variables identified were
the number of approaching and crossing lanes, visibility of
traffic signals, speed limits, and average curve traversal
speeds (18). In this study, variables such as intersection

length, width, and the number of lanes were prioritized
because of their ease and reliability of measurement com-
pared with more challenging factors such as intersection
angle. Table 2 summarizes the geometric characteristics of
intersections that were involved in the study according to
the vehicle trajectories extracted from each intersection. It
could be indicated that most of the intersections in the
study had a median. It could also be observed that most of
the trajectories were collected at intersections with one left-
turn lane. Moreover, the average width of the approaching
lanes was similar between the two data sets.

High correlations among input variables can adversely
affect both model performance and the interpretability of
results. To mitigate these issues, it is essential to eliminate
highly correlated variables before proceeding with model
development (19–21). In this study, the Pearson correla-
tion test was applied to assess relationships between the

Table 2. Summary of the Intersection’s Geometric Attributes

Variable Type Categories Min. Max. Mean Median Frequency

Impeded + unimpeded movements: 32,884 observations
Speed limit (SL) Integer na 15 45 38.03 40 na
Number of left-turn lanes (Nl) Categorical 1 na na na na 18,842
na na 2 na na na na 14,042
Median presence Categorical Yes na na na na 22,535
na na No na na na na 10,349
Distance required for a vehicle to traverse the

intersection (WL)
Continuous na 73 256 143 141 na

Width of the approaching leg (WEntry) Continuous na 25 83 55.19 55 na
Width of the exit leg (WExit) Continuous na 13 59 36.1 36 na

Unimpeded movements: 1,979 observations
Speed limit (SL) Integer na 20 45 38.03 40 na
Number of left-turn lanes (Nl) Categorical 1 na na na na 1,176
Median presence Categorical 2 na na na na 803
na na Yes na na na na 1,251
Distance required for a vehicle to traverse the

intersection (WL)
Continuous No na na na na 728

na na na 73 256 139.5 133 na
Width of the approaching lane (WEntry) Continuous na 25 83 55.01 55 na
Width of the exit leg of intersection (WExit) Continuous na 13 59 34.53 32 na

Note: min. = minimum; max. = maximum; na = not applicable.

Table 1. Summary Statistics of left-turning vehicle speeds

Variable No. of observations Min. Max. Mean Median

All (impeded + unimpeded) left turns: 32,884 total observations
VEntry 32,884 0 42.9 7.35 5.7
VM 28,037 0 53 12.69 12.90
VExit 32,884 5.7 46.50 18.23 17.90

Unimpeded left turns: 1,979 total observations
VEntry 1,979 10.70 42.90 20.9 20.8
VM 1,178 10.7 42.2 16.56 16.50
VExit 1,979 4.40 31.50 18.97 18.60

Note: min. = minimum; max. = maximum.

8 Transportation Research Record 00(0)



predictor variables and identify those with high collinear-
ity (22). As illustrated in Figure 6, variables with correla-
tion coefficients between 0.5 and 0.7 were considered
moderately correlated, while those exceeding 0.7 were
deemed strongly correlated (21, 23, 24). Therefore, the
distance required for a vehicle to traverse the intersection
(WL) was eliminated from model development.

Methodology

Two models were used to identify geometric characteris-
tics influencing left-turning vehicle speeds, including the
OLS and quantile regression models. OLS regression
models are commonly used to relate the mean of the
response variable with its predictors. Unlike OLS regres-
sion, which estimates the mean, quantile regression esti-
mates the relationships between correlates and specific
percentiles, such as the 75th or 95th percentile. This
approach allows for a more nuanced understanding of
the factors influencing different points in the target vari-
able distribution (25, 26). Quantile regression was used
because the distributions of left-turning movements, par-
ticularly pre-entry and entry speeds, were right-skewed.
Quantile regression has been observed to provide a more
accurate prediction for skewed distributions of target

variables (27). The following section describes the OLS
and quantile regression model in detail.

OLS Regression Model

The OLS model is given by Equation 1:

yi =b0 +
Xn

j= 1

bjxij + ei ð1Þ

where
yi =dependent variable, that is, speed of ith keypoint
(mph), i=1, 2, .., m,
b0 =intercept,
bj =coefficient of independent variable j, j=1, 2, .., n,
xij =value of independent variables j in ith speed, and
ei =estimation error or residual for ith speed.

The error ei is assumed to be normally distributed with
a mean of zero and a finite variance. Coefficients of the
independent variables are estimated by minimizing the
mean squared error criterion:

Xm

i= 1

yi � b0 �
Xn

j= 1

bjxij

 !2

ð2Þ

Figure 6. Correlation matrix of selected variables for: (a) all left-turn movements (impeded + unimpeded); and (b) unimpeded-only
left-turn movements.
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The resulting least squares estimates of b0 and b0 are
denoted b̂0 as and b̂j, respectively. OLS models provide
intuitive estimations of the relationship between speed
profiles and associated factors: a one-unit increase in an
independent variable leads to an increase of b̂j in the
mean speed, with all other variables held constant.

Quantile Regression Model

Unlike OLS regression, which models only the average
speed profile, quantile regression can model the rela-
tionship of any quantile with a set of explanatory vari-
ables. In contrast to OLS models that minimize the
mean squared error, quantile regression minimizes a
sum that penalizes asymmetrically: (1 � q) jeij for over
predictions and q jeij for under predictions, where q

represents the quantile point of the outcomes. For
instance, to model the 85th percentile entry speed, q

would be set to 0.85. The prediction errors in quantile
regression are characterized by:

Xn

i ø b
q

0
+
Pn

j= 1
b

q

j
xij

q yi � b
q
0 �

Xn

j= 1

b
q
j xij

�����
�����

+
Xn

i ł b
q

0
+
Pn

j= 1
b

q

j
xij

(1� q) yi � b
q
0 �

Xn

j= 1

b
q
j xij

�����
�����

ð3Þ

where yi is the dependent variable, representing the speed
of the ith observation, and xij denotes the value of the jth
independent variable in the ith observation.

Model Comparison

This study evaluated and compared the effectiveness of
two modeling techniques (i.e., OLS and quantile regres-
sion) by assessing their ability to predict speeds using the
root mean squared error (RMSE). A lower RMSE indi-
cates more accurate predictions. The formula for RMSE
is given by Equation 4:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i= 1

yi � ŷj

 !2
vuut ð4Þ

where
n=number of observations,
yi =observed speed for ith observation in the data set,
and
ŷj=predicted speed for ith observation in the data set.

Results and Discussion

OLS and quantile regression models were used to analyze
the relationship between the speeds of left-turning vehi-
cles and various influencing factors. The OLS model gen-
erates a single set of coefficients, reflecting the average
change in speed with changes in the independent vari-
ables. In contrast, quantile regression offers distinct sets
of coefficients for each quantile, providing a more
nuanced understanding of how independent variables
influence speeds across different points in the speed dis-
tribution. For each quantile, the coefficient interpretation
mirrors that of the OLS model, representing the change
in speed for that specific quantile category. The following
sections provide detailed results of the entry speed,
middle-of-maneuver speed, and exit speed analyses.

Model Assessment

The performance of the models was assessed using
RMSE. The lower the RMSE value, the better the mod-
el’s predictive accuracy. Table 3 shows the results of the
model assessment. For entry speed, the OLS model had
the lowest RMSE (6.583) among models that were fit
when considering all left-turn (impeded and unimpeded)
movements. Similarly, for unimpeded left-turn move-
ments only, the OLS model had the lowest RMSE
(4.913), indicating better predictive performance in the
unimpeded context. For middle-of-maneuver speed, the
OLS achieved the lowest RMSE (4.208 and 3.475) for

Table 3. Model Prediction Measures (RMSE)

Movement Type OLS Median (50th percentile) 85th percentile

Entry speed
Impeded + unimpeded 6.583 6.822 10.006
Unimpeded only 4.913 4.917 7.108

Middle speed
Impeded + unimpeded 4.208 4.241 5.589
Unimpeded only 3.475 3.557 4.289

Exit speed
Impeded + unimpeded 2.622 2.622 3.750
Unimpeded only 2.759 2.797 3.866

Note: OLS = ordinary least squares; RMSE = root mean squared error.
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the model fit to all left-turn (impeded and unimpeded)
movements and unimpeded left-turn movements only.
For exit speed, the OLS model had the lowest RMSE of
2.622 and 2.759 for the combined data set and the unim-
peded movements. Overall, the RMSE values indicate
that the OLS and quantile regression models provide
reasonably accurate predictions, with the quantile regres-
sion models offering nuanced insights into different per-
centiles of speed distributions. The models performed
better for unimpeded movements, reflecting the less vari-
able conditions in such scenarios.

Entry Speed

All Left-Turn Movements. Table 4 presents the results of the
OLS and quantile regression models estimated at the
50th and 85th percentiles for intersection entry speed. All
the selected variables except the presence of median at
the 50th percentile were found to significantly influence
entry speed. For all left-turn movements (i.e., impeded
and unimpeded) the speed limit shows a statistically sig-
nificant positive correlation with entry speed in the OLS
and 50th percentile models but not at the 85th percentile.
This suggests that the influence of posted speed limits is

more apparent under average and typical conditions.
The number of left-turn lanes was found to be a critical
factor influencing entry speed. The presence of two left-
turn lanes is consistently and significantly associated
with higher entry speeds across all models. These results
reinforce the need to consider lane configuration in the
design of yellow intervals for left-turning movements.
The presence of a median has a significant negative asso-
ciation with entry speed in the OLS and 85th percentile
models, indicating that medians can reduce higher-speed
entries into intersections. Approach width (WEntry) is
positively and significantly associated with entry speed
across all three models, indicating that wider intersection
entries may encourage higher vehicle entry speeds. In
contrast, exit width (WExit) is significantly and negatively
correlated with entry speed in the OLS and 85th percen-
tile models, suggesting that wider downstream paths
reduce intersection entry speed.

Unimpeded Left-Turn Movements. For unimpeded move-
ments, the speed limit does not show a statistically signif-
icant relationship with entry speed in any of the models.
This indicates that, in the absence of vehicle interference,
driver entry speeds are likely to be influenced more by

Table 4. Estimation results of OLS and Quantile Regression Models for Entry Speed

OLS Median (50th percentile) 85th percentile

Variables Coefficient P-Value Coefficient P-Value Coefficient P-Value

All left turns
Intercept 5.276 0.00 2.647 0.00 12.698 0.00
Speed limit 0.024* 0.03 0.038* 0.01 0.008 0.67
NL

1 Base Base Base
2 1.330* 0.00 2.187* 0.00 1.783* 0.00

Median
No Base Base Base
Yes 20.869* 0.00 20.223 0.22 22.291* 0.00

WEntry 0.036* 0.00 0.017* 0.03 0.088* 0.00
WExit 20.02* 0.00 20.004 0.51 20.062* 0.00
RMSE 6.541 6.782 9.935

Unimpeded left turns
Intercept 18.558 0.00 17.967 0.00 20.780 0.00
Speed limit 0.001 0.97 20.001 0.98 0.017 0.78
NL

1 Base Base Base
2 1.319* 0.00 1.558* 0.00 1.894* 0.00

Median
No Base Base Base
Yes 20.837* 0.03 20.370 0.42 20.171 0.82

WEntry 0.017 0.25 0.014 0.45 0.030 0.28
WExit 0.037* 0.02 0.048* 0.01 0.044 0.11
RMSE 4.759 4.771 6.561

Note: OLS = ordinary least squares; RMSE = root mean squared error.
*Statistically significant at 0.05 level.
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roadway geometry or individual driving behavior than
posted limits. The number of left-turn lanes remains a
significant factor, with dual-lane configurations associ-
ated with higher entry speeds, 1.32mph (OLS), 1.56mph
(50th percentile), and 1.89mph (85th percentile). These
consistent findings further highlight the role of lane con-
figuration even under unimpeded conditions. The pres-
ence of a median is statistically significant in the OLS
model, showing a negative correlation with entry speed.
This suggests that medians may influence entry behavior
when there is no vehicle interaction, although the effect
appears insignificant across percentiles. In contrast to all
left-turn movements, approach width (WEntry) is not sta-
tistically significantly related to entry speed under unim-
peded conditions. However, exit width (WExit) is
significantly and positively associated with entry speed in
both the OLS and 50th percentile models, implying that
wider exit paths may encourage faster entries when the
turning movement is not impeded.

Middle-of-Maneuver Speed

All Left-Turn Movements. Table 5 presents the OLS and
quantile regression models for the middle-of-maneuver
speed. The speed limit shows a consistently significant

negative association with middle-of-maneuver speed
across all three models. This suggests that at intersec-
tions along higher-speed arterials, drivers tend to reduce
their speed mid-turn, possibly as a result of greater cau-
tion when finding gaps in faster-moving cross traffic.
The number of left-turn lanes remains a significant factor
in all models. When two left-turn lanes are present, driv-
ers tend to maintain higher speeds during the maneuver.
This likely reflects greater geometric flexibility and confi-
dence in lane positioning during the turn. The presence
of a median shows a significant positive relationship with
middle-of-maneuver speed across all models. This may
indicate that medians help organize traffic flow and
reduce uncertainty, enabling smoother and faster mid-
turn movement. Approach width (WEntry) and exit width
(WExit) have positive and statistically significant associa-
tions with middle-of-maneuver speed across all models,
differing from prior results. Wider entry and exit paths
may reduce turning radii or allow more fluid lane
changes mid-turn, contributing to increased speeds dur-
ing the maneuver.

Unimpeded Left-Turn Movements. For unimpeded left turns,
the speed limit retains a negative correlation with the

Table 5. Estimation Results of OLS and Quantile Regression Models for Middle-of-Maneuver Speed

OLS Median (50th percentile) 85th percentile

Variables Coefficient P-Value Coefficient P-Value Coefficient P-Value

All left turns
Intercept 7.494 0.00 5.626 0.00 11.508 0.00
Speed limit 20.032* 0.00 20.022* 0.00 20.024* 0.00
NL

1 Base Base Base
2 2.338* 0.00 2.487* 0.00 1.847* 0.00

Median
No Base Base Base
Yes 0.846* 0.00 0.928* 0.00 0.462* 0.00

WEntry 0.044* 0.00 0.058* 0.00 0.054* 0.00
WExit 0.066* 0.00 0.088* 0.00 0.048* 0.00
RMSE 4.335 4.364 5.741

Unimpeded left turns
Intercept 16.451 0.00 16.457 0.00 16.759 0.00
Speed limit 20.089* 0.01 20.140* 0.00 20.038 0.36
NL

1 Base Base Base
2 1.436* 0.00 1.570* 0.00 1.485* 0.01

Median
No Base Base Base
Yes 20.306 0.46 20.510 0.25 20.440 0.41

WEntry 0.051* 0.00 0.070* 0.00 0.058* 0.01
WExit 0.001 0.98 0.026 0.11 0.005 0.79
RMSE 3.515 3.538 4.515

Note: OLS = ordinary least squares; RMSE = root mean squared error.
*Statistically significant at 0.05 level.
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middle-of-maneuver speed, significant in the OLS and
50th percentile models but not at the 85th percentile.
This again reinforces the idea that drivers tend to slow
more on high-speed arterials when navigating unimpeded
turns, potentially exercising caution even without traffic
interference. The number of left-turn lanes continues to
have a positive and significant effect on speed across all
models. This suggests that even under free-flowing con-
ditions, dual-lane turns facilitate more confident, faster
maneuvering. In contrast to the all left-turn movements,
the presence of a median is not statistically significant in
any model for unimpeded movements. The approach
width (WEntry) remains positively and significantly associ-
ated with speed in all models, reinforcing the idea that
wider entry geometry supports more fluid turning.
Meanwhile, exit width (WExit) is not statistically signifi-
cantly related to middle-of-maneuver speed in any
model, indicating it may not influence driver behavior as
strongly when turns are made without vehicle conflict.

Exit Speed

All Left-Turn Movements. Table 6 summarizes the results of
the OLS and quantile regression models for exit speed.
For all left-turn movements, the speed limit shows a

small positive relationship with exit speed, but it is statis-
tically significant only in the 50th percentile model. This
suggests that drivers tend to exit slightly faster on higher-
speed roadways, particularly around the median speed
distribution. The number of left-turn lanes is negatively
associated with exit speed in all models, though it is sta-
tistically significant only in the 50th percentile model.
This supports the idea that in dual-lane configurations,
drivers may slow down while exiting because of con-
straints in lane positioning or the presence of adjacent
vehicles. The presence of a median is positively and sig-
nificantly associated with exit speed across all models.
This may indicate that medians reduce perceived or
actual conflict points at intersections, allowing drivers to
accelerate more confidently when completing their turn.
Both approach width (WEntry) and exit width (WExit) are
positively and significantly correlated with exit speed in
all models. This differs from earlier results where WExit

showed a negative correlation. The updated models sug-
gest that wider entry and exit lanes offer more maneuver-
ing space, encouraging higher exit speeds.

Unimpeded Left-Turn Movements. Among unimpeded left
turns, the speed limit is not significantly associated with

Table 6. Estimation Results of OLS and Quantile Regression Models for Exit Speed

Variables

OLS Median (50th percentile) 85th percentile

Coefficient P-Value Coefficient P-Value Coefficient P-Value

All left turns
Intercept 11.850 0.00 11.581 0.00 14.343 0.00
Speed limit 0.007 0.12 0.012* 0.01 0.006 0.22
NL

1 Base Base Base
2 20.050 0.28 20.155* 0.00 20.026 0.66

Median
No Base Base Base
Yes 1.086* 0.00 0.997* 0.00 1.159* 0.00

WEntry 0.067* 0.00 0.072* 0.00 0.073* 0.00
WExit 0.045* 0.00 0.041* 0.00 0.041* 0.00
RMSE 2.792 2.794 3.883

Unimpeded left turns
Intercept 14.068 0.00 13.599 0.00 15.748 0.00
Speed limit 20.013 0.52 0.009 0.64 20.031* 0.02
NL

1 Base Base Base
2 20.156 0.47 20.442* 0.04 20.828* 0.00

Median
No Base Base Base
Yes 0.555 0.02 0.126 0.58 1.054* 0.00

WEntry 0.062* 0.00 0.069* 0.00 0.077* 0.00
WExit 0.051* 0.00 0.040* 0.00 0.071* 0.00
RMSE 2.844 2.857 3.850

Note: OLS = ordinary least squares; RMSE = root mean squared error.
*Statistically significant at 0.05 level.
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exit speed in the OLS or 50th percentile models but
shows a significant negative effect at the 85th percentile.
This may indicate that faster drivers self-regulate more
conservatively when approaching exits on high-speed
roads in the absence of traffic interference. The number
of left-turn lanes continues to have a negative and signifi-
cant effect on exit speeds across higher quantiles, with a
strong negative association at the 85th percentile. This
further supports the hypothesis that dual left-turn lanes
constrain higher-speed exits, especially among faster
drivers. Unlike all left-turn movements, the presence of a
median is only significant in the 85th percentile model.
This suggests that median presence primarily benefits
higher-speed turn executions in unimpeded conditions,
likely by creating a clearer path or visual cue for accel-
eration. Both WEntry and WExit remain significantly and
positively correlated with exit speed across all models,
reinforcing their roles in providing geometric comfort
and flexibility that support faster turning completion.

Conclusions

Determining yellow and red clearance intervals requires
parameters such as perception-reaction time, the 85th
percentile of approach speed, and approach grade. While
some can be applied universally, local data are needed
for specific parameters such as left-turn entry speed. The
ITE 2020 Guidelines and NCHRP Report 731 suggest
using speed limits to estimate the 85th percentile of inter-
section approach speed and intersection entry speed, but
this method may lead to inaccuracies at intersections with
unique geometric features, such as dual left-turn lanes or
varying turning radii. While collecting field speed data
provides accurate measurements, it poses challenges for
many agencies because of cost and scalability. This study
aims to evaluate how geometric characteristics at signa-
lized intersections affect left-turning vehicle speeds and
demonstrates the usefulness of crowdsourced trajectory
data in determining left-turn entry speed. The research
also considers speeds during the middle and exit phases
of the left-turn maneuver, offering valuable data for vari-
ous applications such as driving simulators and traffic
management tools.

In this study, 60 signalized intersections within the
City of Tucson were selected to examine left-turning vehi-
cle speeds. Using crowdsourced trajectory data, left-
turning vehicles were identified, and their speeds
recorded. Unlike previous studies, which focused primar-
ily on free-flow conditions, left-turn movements were
categorized into two types: impeded and unimpeded.
Impeded movements include left-turning maneuvers
where the speed profile is impeded as a result of delays
caused by conflicts with pedestrians, conflicting approach
traffic, or left-turn queues. Unimpeded movements, on

the other hand, refer to left turns with unimpeded speed
profiles, where the vehicle completes the turn without
stopping for queues or conflicts with pedestrians and
crossing traffic. OLS regression models and quantile
regression models were used to analyze the speed profiles
and determine the impact of certain variables on left-
turning speeds. These models provided insights into how
different factors influence left-turning speeds under both
impeded and unimpeded conditions.

The results indicate that roadway geometry and regu-
latory factors significantly influence vehicle speeds during
left-turn maneuvers. An increased number of left-turn
lanes was associated with higher entry and mid-maneuver
speeds in impeded movements but corresponded with
lower exit speeds across both impeded and unimpeded
conditions. The presence of a median reduced entry
speeds but was linked to increased mid-maneuver and
exit speeds in impeded scenarios. Additionally, wider
approach widths were positively associated with entry
and exit speeds for impeded movements, while exit width
was a significant factor in increasing exit speeds regard-
less of movement type.

These findings highlight the importance of consider-
ing geometric and operational characteristics of intersec-
tions to improve signal timing design for left-turning
vehicles at intersections. Based on these results, it is
imperative that agencies consider collecting data in the
field to estimate the yellow interval, especially at intersec-
tions with unique characteristics. As it was indicated that
number of lanes and presence of median have a major
impact on the entry speed. This result also indicates that
agencies could use the crowdsourced trajectory data to
estimate the vehicle entry speeds and apply them to esti-
mate the yellow intervals because these data capture the
variability of the left-turn entry speeds at different loca-
tions. Although the most common intersections in
Tucson are standard 90� intersections, a limitation of this
study is that it does not consider intersection angle as a
variable. Moreover, it is important to note the limita-
tions of crowdsourced data, as they do not represent the
entire population of road users, and penetration rates
vary between agencies. Although yellow and red clear-
ance intervals are fixed in the City of Tucson, some juris-
dictions use variable signal timing strategies, including
dynamic yellow change and clearance intervals. Future
research should, therefore, explore the effectiveness and
feasibility of such adaptive systems under varying traffic
conditions. Future research directions could include
examining the impact of other vehicles, such as following
or leading vehicles, and incorporating signal timing
phases, including permissive or protected left-turn
phases, into the analysis. Additionally, accounting for
the influence of intersection angle, pedestrians, cyclists,
and heavy vehicles, along with demographic
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characteristics, vehicle classification, and other relevant
factors could provide a more comprehensive understand-
ing of driver behavior for left-turn movements. By
expanding the scope of the study, researchers can better
inform intersection design and traffic management stra-
tegies to enhance overall traffic safety and performance.
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