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Abstract

Ramp metering enhances traffic mobility and safety by optimizing the flow of vehicles onto freeways. A complete realization
of ramp metering benefits on freeway networks partially depends on the drivers’ compliance with the ramp meter signals.
Noncompliance could lead to excessive volumes entering the mainline freeway, increasing congestion, delays, and merging
location safety risks. Understanding the factors influencing compliance can help design ramp metering locations and develop
metering algorithms that enhance driver adherence to ensure effective operations of the ramp metering system. This study
used data collected from the freeway system in Phoenix, Arizona to identify factors influencing ramp metering compliance.
The measures of compliance: compliance rates and violation counts were estimated using the controller event—based (CEB)
data. Linear regression models were used to examine the impacts of factors, including the number of lanes on a ramp, ramp
volumes, and metering rates. A spatial transferability analysis was performed to assess the applicability of the model when
used to uncover route-specific factors influencing drivers’ compliance to ramp metering signals. Results revealed that mainline
volume, upstream average annual daily traffic (AADT), percentage of time a ramp experienced queueing, ramp volume, ratio
of ramp volume to metering rate, number of lanes, ramp length, route, peak hours, ramp speed, mainline speed, and metering
rate significantly contributed to drivers’ compliance with ramp metering signals. These results could be used by transporta-
tion departments to optimize the existing ramp metering strategies and plan for future deployments of ramp metering
signals.
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Ramp metering is a key traffic management strategy
designed to manage traffic flow and reduce delays by
controlling the rate at which vehicles enter freeways (/—
3). Efficient ramp metering ensures low freeway conges-
tion levels, safe merging segments, and short ramp delays
(4, 5). However, the efficacy of ramp metering hinges sig-
nificantly on driver compliance (I, 5-7). Compliance
occurs when vehicles pass the ramp signal during the
green phase, while noncompliance occurs when vehicles
pass during the red phase (7). As shown in Figure 1,
which provides a simplified diagram of ramp metering,
vehicles traveling on the ramp pass several key detection
points: the queue detector, demand detector, and passage
detector. For the purpose of this study, compliance and
noncompliance are defined by whether a vehicle actuates
the passage detector during the green or red phase,
respectively. Noncompliance can result in excessive
volumes entering the mainline freeway and pose safety

risks as traffic fails to integrate smoothly onto freeways
1,2,5,7,8).

Measuring compliance is crucial for monitoring, eval-
uating, and improving the performance of ramp metering
signals. Previous studies have faced challenges in collect-
ing extensive data on driver behavior, often relying on
short-term video data collection at specific locations (5,
7). While these video-based methods are valuable for cap-
turing snapshots of driver behaviors, they are inherently
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Figure I. Simplified diagram of ramp metering detection points.

limited in scope and duration. These limitations mean
that previous research only covers brief periods and is
constrained to specific locations, making it difficult to
generalize findings or understand long-term trends and
variations. Consequently, these approaches lack long-
term viability for application by departments of transpor-
tation (DOT) as they require sustained monitoring and
comprehensive analysis.

The emergence of controller event—based (CEB) data
offers an opportunity to evaluate ramp metering compli-
ance over extended periods and across various ramp
locations. This data-driven approach allows for a more
robust and scalable analysis, enabling better-informed
decisions to enhance traffic management strategies. CEB
data provides a comprehensive and continuous data set,
capturing detailed and nuanced information over time.
Unlike traditional aggregated traffic data, which can
obscure crucial details and is susceptible to noise, CEB
data allows for analyzing real-time events and trends,
offering a clearer picture of driver behaviors and their
changes over extended periods (9). Recent research has
demonstrated the value of CEB in various aspects of traf-
fic operations, including predicting pedestrian volumes at
intersections (/0), queue length estimation (//, /2), and
volume estimation (/3), showcasing the potential of CEB
data in predicting traffic dynamics. Furthermore, CEB
has been used in a multitude of driver behavior studies,
such as modeling stop-and-go behavior, predicting red-
light running (/4, 15), and dilemma zone modeling (/6),
underscoring the potential of event-based data in eluci-
dating long-term trends.

Identifying factors contributing to compliance or non-
compliance is another step toward improving ramp meter
performance. Understanding these factors, particularly
those related to the infrastructure, location, or geometric
design, could assist agencies in three areas: 1) identifying

ramps expected to have complying drivers to get the full
benefits of deploying ramp metering signals; 2) designing
ramps to encourage compliance, such as two-lane ramps
versus one-lane ramps; and 3) considering compliance
when developing ramp metering rate algorithms and stra-
tegies to ensure the full effectiveness of ramp metering
systems. Prior research has reported the ramp metering
compliance rate without fully understanding the factors
leading to noncompliance at different locations or has
viewed compliance as a secondary objective or variable
in a model of freeway mobility or safety (5, 7).

Few studies have evaluated ramp metering compli-
ance in attempts to identify factors influencing it and
develop strategies that could promote it. Sun et al. (5)
implemented temporary ramp meters preceding work
zones in Columbia, MO, and found significant differ-
ences in compliance based on vehicle classification, signal
timing, and congestion level on the mainline freeway.
Ramps with mixed passenger cars (PC) and commercial
motor vehicles (CMV) showed higher compliance than
those with only PCs. Sites employing two-section heads
exhibited a compliance rate between 45% and 55%. The
site with the highest compliance rate of 75% remains
lower compared with that of permanent ramp meter
locations, likely attributable to a lack of familiarity with
ramp meters in the area (5, 7). Notably, within sites
employing three-section heads, green time significantly
influenced compliance. In addition, platooning vehicles
led to higher compliance than single vehicles. Piotrowicz
and Robinson (3) corroborated these findings by report-
ing that noncompliance is contagious as the violations
accumulate rapidly once one vehicle refuses to stop, lead-
ing to an ineffective system.

While studies such as Sun et al. (5) and Zhu (7) have
examined compliance at temporary ramp meters and
identified factors such as vehicle classification and pla-
tooning behavior, the literature on permanent ramp
meters is limited in its methodological rigor and geo-
graphic scope. Most existing studies mention compliance
as an observed outcome but do not statistically assess fac-
tors contributing to compliance. For instance, Piotrowicz
and Robinson (3) describe the status of ramp metering in
the United States as having good compliance rates in San
Diego, Los Angeles, Minneapolis, and St. Paul; however,
these studies do not specify statistical methodology, and
the criteria for “good” compliance remain vague.
Similarly, reports on general ramp meter compliance sug-
gest that targeted enforcement and enhanced signage can
improve compliance rates (2, 3). However, empirical data
specific to ramp meter enforcement affecting compliance
are not provided. This leaves a gap, where studies such as
those by Grzybowska et al. (8) highlight that further
research on ramp meter user compliance and satisfaction
is important.
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Our study addresses these gaps through several key
contributions, offering actionable insights for policy-
makers and practitioners:

® An in-depth analysis of permanent ramp meters
and the various factors affecting compliance. This
includes examining geometric configurations, such
as dual- and single-lane ramp meters, along with
different traffic characteristics, to understand their
influence on compliance.

¢ A methodology that leverages continuous data,
specifically CEB data, rather than the temporary
data used in previous studies. This consistent,
ongoing data source enables effective compliance
monitoring and supports long-term analysis.

The investigation enhances the understanding of ramp
metering strategies and offers valuable insights for trans-
portation agencies and policymakers. Practical implica-
tions include identifying the factors that affect
compliance, enabling the development of more effective
ramp metering strategies, policies, and the continued
examination of ramps over time.

Study Sites and Data
Site Characteristics

The Phoenix Metropolitan Area has a total of 263
ramp meters, with this study focusing on 24 ramp
meters across various cities, including Phoenix, Peoria,
and Tempe, Arizona. These cities were selected for their
diverse urban landscapes and varying traffic condi-
tions, representing a range of driver behaviors and
environments. Figure 2 illustrates the locations of the
24 ramp meters used in this study, which were spread
across four different routes: Interstate 17 (I-17), Loop
202 (L-202), Loop 101 (L-101), and State Route 51
(SR-51). Of these locations, 16 are dual-lane ramp
meters, and eight are single-lane ramp meters, all oper-
ated using the Arizona Department of Transportation’s
(DOT) adaptive metering algorithm. The study was
based on high-frequency CEB data collected for three
months (March 1, 2023 through May 30, 2023), yield-
ing nearly 100 million data rows across all study ramps
and mainline arcas before aggregation. In addition,
previous studies have shown that at least two months
of data is sufficient for ramp metering assessment (/7).

Data

The analysis was based on three data sets: traffic data,
geometric characteristics data, and CEB data. The traffic
data—comprising ramp volumes, ramp speeds, mainline
volumes, and mainline speeds—were provided by
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Figure 2. Map of study site locations.

Arizona DOT. Ramp volumes were collected from the
stop bar loop detectors at ramp meters in 20-s intervals.
The mainline volumes and speeds were collected from
freeway loop detectors during the same period and inter-
vals. The ramp speeds were gathered using INRIX probe
vehicle speed data. All speeds and volumes were aggre-
gated into 15-min increments. This aggregation approach
allowed us to address missing or anomalous data points
by averaging available values within each interval, mini-
mizing the impact of isolated gaps or sensor errors. In
cases of prolonged data absence, the extensive data vol-
ume allowed us to exclude these periods without com-
promising the reliability of our analysis. This method
aligns with previous studies (/7-19) that have success-
fully used similar time interval aggregation to manage
data gaps and maintain data reliability. The traffic data
also include the average annual daily traffic (AADT) val-
ues that were obtained from the MS2 traffic count data-
base system.

The geometric characteristics data included the ramp
length and the number of lanes at each ramp metering
signal. Ramp lengths were measured using Google Maps,
with measurements taken from the stop bar to the point
where the ramp diverged from the arterial road. In addi-
tion, Arizona DOT provided data on the ramp meter
types corresponding to specific ramp meter IDs. The
ramp types (e.g., single-lane versus dual-lane ramp meter)
were also verified with Google Maps.

The CEB data were collected from the ramp meter
cabinets during the study period. Once preprocessed,
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CEB data include information on metering rates, queue-
ing, and violation events. CEB data stores all events
made by the signal controller (e.g., signal phase changes)
and the loop detectors (e.g., detector actuations), along
with the timestamps of when these events occur on the
ramp. Specifically, the data records signal phase changes,
detailing the start and end times of green and red inter-
vals, and loop detector actuations, capturing the exact
moment a vehicle actuates a detector “on” and “off.”
This data are stored in the cabinet at the side of the road
and delivered through MaxView, an advanced traffic
management system (ATMS) to Arizona DOT. The con-
stant recording of events at a high resolution (e.g.,
0.1sec) allows for detailed monitoring of ramp meter
operations and driver compliance. This comprehensive-
ness of CEB data, capturing both the signal controller
actions and the corresponding vehicle responses, makes
it a valuable resource for assessing potential violations
and understanding driver behavior.

Methodology

This section describes the methodology to evaluate fac-
tors affecting ramp metering compliance using controller
event data. The methodology is divided into five steps:
mapping the CEB data, estimating the compliance
metrics, selecting model variables, fitting a regression
model, and testing the transferability of the model on
other ramp metering locations. The following sections
discuss the methodology in detail.

CEB Data Mapping

The CEB data focus on specific occurrences and their
exact timing, offering precise and granular details, espe-
cially for capturing asynchronous events. In contrast,
time series data collects observations at regular intervals,
which can miss fine details or include irrelevant data.
While CEB data provide detailed insights into individual
events, they often need to be mapped to time-series data
to analyze patterns and trends over time, helping to
understand behaviors such as ramp meter performance
during specific periods.

In mapping the data set to a time series, queueing sta-
tus is represented as Q’:n ;» where O denotes queueing, m
specifies the ramp meter, / indicates the lane, and p repre-
sents the time period. This notation enables identification
of whether a given ramp meter m experienced queueing
in lane / during period p. Similarly, ramp metering rates
are denoted as R , where R indicates the metering rate at
meter m during period p; as metering rates apply uni-
formly across all lanes, the lane [ is not specified for R.

The CEB data were retrieved from an SQL server,
resulting in a set, EBData, comprising tuples containing

an event timestamp z,, a ramp meter ID m from the set
of all ramp meters M, an event ID ¢;, and an event para-
meter p,.. These tuples are sorted in ascending order by m
and 7,. A time series was generated from the initial to the
final event timestamp, with each 1-min time period p
spanning the entire interval between these two time-
stamps, creating a set of time periods P.

The events used are 1,170 and 1,171 (lane one queue
sensor off and on, respectively), 1,172 and 1,173 (lane
two queue sensor off and on, respectively), and 1,058
(ramp meter active rate update). For events 1,170 to
1,173, only data items with a parameter p, = 1 are used,
corresponding to a level one queueing as defined by
Arizona DOT. This level indicates that the queue occu-
pancy has reached a threshold of 50% or greater for the
queueing sensor. For each lane 1 of each ramp meter m,
the time periods p between ramp queue sensor “on” and
“off” events are flagged as @, , = 1. Similarly, metering
rates are assigned to the corresponding period p in which
they are active. If either lane was flagged as having
queueing during period p, the ramp meter m was consid-
ered to be queueing during that period. While the calcu-
lated queueing during the time period can be influenced
by the placement of the queue detector and the estab-
lished occupancy threshold values, these factors are gen-
erally consistent across similar set-ups. Thus, the
methodology employed in this study, along with the use
of a queueing variable, is beneficial for evaluating the
factors affecting compliance. The event-based data time
series mapping algorithm is detailed as pseudocode
below in Table 1.

Compliance Metrics Estimation

This study uses the violation counts and compliance rate
to comprehensively evaluate the factors affecting compli-
ance. Violation counts offer insight into the magnitude
or frequency of noncompliance events and benefit agen-
cies by providing an understanding of compliance pat-
terns. The violation count, VCP, represents the number
of vehicles noncompliant with the ramp meter during a
15-min period p. This count was obtained from the CEB
data, with each violation recorded under a specific viola-
tion event ID (1205); the total number of events was then
aggregated for each 15-min period. Noncompliance is
defined as a vehicle passing over the loop detector while
the signal is red, triggering the controller to record the
violation event ID.

The compliance rate is a commonly used metric used
to assess a ramp’s effectiveness in metering traffic and to
measure the severity of noncompliance relative to ramp
volume. The compliance rate is denoted as CR”, and cal-
culated as the ratio of compliant vehicles to the total
ramp volume:
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Table I. Pseudocode to Map Event-Based Data to a Time Series

Event-Based Data Time Series Mapping Algorithm

Input: Event-based data EBData, zeroed queueing binary time series anv,, empty ramp metering time series RP, and set of time periods P.
Output: Time series of binary indicating queueing (Qﬁ,,ﬁ,) and metering rates (RP ).

I: for each {t., m,e;,pe} € EBData do

2 ife; = 1170 and p. = | do // lane one queue sensor off

3 tof = te

4 ton = last(te, 1171) // last lane one queue on timestamp

5 forp e P do

6: if p =t,, and p<t,s do // if period p between queue on and off events
7 Q,’;), = | // set lane one as queueing

8 end for

9: ife; = 1172 and p. = | do // lane two queue sensor off

10: tof = te

K ton = last(te, 1173) // last lane two queue on timestamp
12: forp € P do

13: if p=t,, and p<t,r do // if period p between queue on and off events
14: Q,’;’Z = | // set lane two as queueing
15: end for
16: ife; = 1058 do
17: tupdate = te
18: tiniiat = last(te, 1058 ) // last metering rate update timestamp
19: rate = plr [/ last metering rate set is active rate up through t.
20: for p € P do
21: if p = tini and p<typaae do // if period p between rate update events
22: RP = rate //set rate to that active during period p
23: end for
24: end for
25: return {Qﬁq.,, an}
_cre

CRP = =
VRP

where

CRP is the compliance rate at time period p,
CV? is the number of compliant vehicles during
time period p, and

e VRP is the total ramp volume (vehicles entering the
freeway) during time period p.

Model Variables Selection

The variables considered in the analysis included the time
of day, ramp meter type, ramp volume, ramp metering
rate, the ratio of volume to metering rate, henceforth
referred to as rate capacity ratio, and the percent of the
time a ramp experienced queueing, henceforth referred to
as percent queueing because of their intricate relationship
with compliance metrics. The ramp meter type had two
categories based on the ramp metering locations included
in the study. The 24 ramps chosen exhibited a broad range
of lengths from 265 ft to 2000 ft, as illustrated in Figure
3a. Single-lane ramps typically have longer lengths than
dual-lane ramps, reflecting both the need to accommodate
all traffic entering with only one lane and the limited space

in dense urban environments. Single-lane ramps tend to
have their stop bar and meter positioned closer to the
mainline, as they do not require additional space for mer-
ging. This positioning can also contribute to their overall
length. Notably, this study’s site selection demonstrates
diversity across ramp lengths, with several dual-lane ramps
surpassing the lengths of single-lane counterparts.

Figure 3b shows the AADT of the ramps, ranging
from 5,433 vehicles per day (vpd) to 17,082 vpd. Both
the ramp length and ramp AADT are important factors
in capacity and congestion management and may play a
role in influencing drivers’ compliance.

The ramp metering volume was not altered and was
applied as was collected from the loop detectors. The
metering rate was determined by Arizona DOT’s adap-
tive metering algorithm for effective traffic management,
and exploring these relationships offers insights into the
dynamics of ramp metering systems. The rate capacity
ratio was a variable derived from the collected data,
included in the analysis for analyzing spatial patterns, as
it indicates which locations have volumes at or exceeding
the ramp metering rate set by Arizona DOT. While vol-
ume and metering rate individually provide useful infor-
mation about a selected ramp, taking the ratio of ramp
volumes to the metering rate offers a holistic view of the
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Figure 3. Ramp characteristics by type: (a) ramp length; and (b) ramp average annual daily traffic (AADT).

relationship between these two variables. The rate capac-

ity ratio, R.,, was computed using:
v
R, = R (2)
where

e R' represents the rate capacity ratio,

e V! denotes the ramp volume, and

e R"indicates the metering rate all in each time z.
Percent queueing is the percentage of time within each
15-min period where queueing occurred. The peak hours
were from 6:00a.m. to 9:00a.m. and from 3:00 p.m. to
6:00p.m. based on information provided by Arizona
DOT, with all other hours being considered off-peak.

A general understanding of driver behavior led to the
recognition that factors such as speed and the time of
day are likely correlated with compliance. Employing a
correlation threshold of 0.75, highly correlated variables
were identified and removed from the modeling process.
Figure 4 presents the correlation matrix for the following
variables: mainline volume, upstream AADT, ramp vol-
ume rate capacity ratio, ramp meter type, ramp length,
route, peak hours, ramp speed, mainline speed, metering
rate, and percent queueing.

Regression Analysis

Ordinary least squares (OLS) regression was employed to
evaluate factors affecting ramp meter compliance after
removing highly correlated variables. The OLS regression
model was applied in two phases: first, on a network-
wide scale to capture spatial effects among various routes
and gain insights into system-wide dynamics; second, the
model was applied without route-specific variables for a
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Figure 4. Correlation matrix of the variables included in
modeling.
Note: AADT = average annual daily traffic.

transferability analysis. OLS regression was used because
it aids in assessing how variables can estimate instances
of noncompliance and quantitatively determines statisti-
cally significant factors affecting compliance metrics. To
refine the model, backward elimination was employed to
include all available variables in the OLS regression and
iteratively remove the statistically insignificant ones.
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Backward elimination allowed for discerning the most
effective variables, with lower p-values indicating super-
ior statistical significance. All analyses were performed
using R Statistical Software (R Core Team 2022).

The OLS regression is fundamental in statistical anal-
ysis because of its simplicity and interpretability when
modeling the relationship between variables. The general
form of an OLS model is:

Vi = BO + ZBjxij + g (3)

Jj=1

where
e y; is the dependent variable at the i -th observation,
® B, is the intercept, and
® B, are the coefficients of the independent variables.
The term x;; represents the values of the j -th independent
variable for the i -th observation. The error term g;
accounts for deviation of the observed values from the
predicted values, assuming it is normally distributed with
a mean of zero and constant variance. In this model 3,
represents the expected value of y; when all x;; are zero,
and B; quantifies the change in y; associated with a one-
unit change in x;;, holding other variables constant.

The coefficients B, and B, are estimated using the
OLS method, which minimizes the sum of squared errors
(SSE):

2
SSE = Z ()h’ —Bo— Z Bjxij> 4)

J=1 J=1

The OLS estimates B, and 3; are those that minimize the
SSE, providing the best linear unbiased estimates of the
model parameters (20).

Transferability Analysis

A model spatial transferability test was conducted to fur-
ther validate the developed linear regression models.
Figure 5 below displays a map showing the route selected
for testing in red and the ramp meters used for training
the model in blue. This analysis involved redeveloping
the linear regression model excluding any route-specific
characteristics to assess the feasibility of a simplified
model for estimating compliance levels of a ramp. The
objective was to determine if the developed model will be
predictive in a localized context without the inclusion of
specific route variables on new data by the redeveloped
model. By applying the simplified model to SR-51, we
evaluated its performance and practicality, thereby pro-
viding insights into the generalizability and potential
implementation of the model for future ramp construc-
tion planning. Linear regression was selected for the
transferability analysis because of its simplicity and

emi T

Case Study Locations
Test Site

Type
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Figure 5. Map of testing and training sites.

interpretability, aligning with our focus on identifying
factors that affect compliance. Similar studies, such as
Apronti et al. (21), have also applied linear regression to
bounded count data with success, particularly when the
data distribution minimizes the risk of extrapolation
beyond bounds. In our case, the distribution of ramp
meter data (where violation counts are greater than zero
and compliance rates are between 0 and 1) helped miti-
gate such risks, supporting the model’s applicability.

Results and Discussion

Exploratory Data Analysis

Understanding the interplay between ramp meter compli-
ance metrics—compliance rate and violation count—and
factors such as metering rate, is crucial for effective mod-
eling and estimation of these metrics. An exploratory
data analysis (EDA) was conducted to determine possible
patterns and relationships between various factors and
ramp metering compliance metrics. Note that the viola-
tion counts were initially collected for the entire ramp.
However, to make a fair comparison between dual-lane
and single-lane ramps, the average violation count per
lane was calculated by dividing the total violations at
dual-lane ramps by two.

Figure 6a depicts the relationship between the count
of violations per lane in a 15-min bin and the correspond-
ing ramp volumes. For single-lane ramps, no discernible
pattern between violations and ramp volumes is
observed, indicating that the number of violations does
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Figure 6. Relationship between compliance metrics and ramp volumes: (a) violation count versus ramp volume; and (b) compliance rate

versus ramp volume.

not consistently increase or decrease with traffic volume.
In contrast, dual-lane ramps exhibit a slightly linear rela-
tionship, where the number of violations tends to
increase as ramp volumes rise. This suggests that higher
volumes on dual-lane ramps may lead to more violations.

Figure 60 demonstrates the relationship between the
overall compliance rate and ramp volumes. Since the
compliance rate is measured across the entire ramp rather
than per lane, it provides a holistic view of ramp compli-
ance relative to traffic volume. The data shows that there
are instances of high compliance rates at lower ramp
volumes, aligning partially with the trends observed in
violation counts. However, notably, most instances of
noncompliance occur at lower volumes, which is evident
as compliance rates rarely drop below 90%, and when
they do, it tends to happen at lower volumes. This inverse
relationship indicates that as ramp volumes decrease,
noncompliance tends to increase.

In addition to the volume considerations, the analysis
explored the complex relationship between compliance
metrics and metering rate. Figure 7 reveals that both
compliance metrics exhibit a quadratic relationship with
metering rates for single-lane and dual-lane ramps. The
quadratic fit was selected for subsequent analysis because
of its higher R? value (0.21), compared with the linear
(R* = 0.02) and square root (R®> = 0.01) fits. Although
the R? is modest, it still demonstrates that a quadratic fit
explains substantially more variance than other relation-
ships that were tested. Figure 7a shows that single-lane
ramps have a high point of noncompliance at a metering

rate of around 200 vehicles per 15min. Dual-lane ramps
exhibit a similar pattern, with noncompliance peaking at
around the same metering rate. This quadratic relation-
ship suggests that as metering rates approach 200 vehi-
cles per 15 min, the number of violations increases as the
square of the change in metering rate. Figure 7b illus-
trates the relationship between compliance rate and
metering rate. Compliance rates are like violation counts
but offer a more balanced view as they incorporate vol-
ume in their calculations. Both single-lane and dual-lane
ramps show a high point of noncompliance at a metering
rate of around 200 vehicles per 15min, reflecting the
inverse relationship between compliance rates and viola-
tion counts. Overall, Figure 7 demonstrates that the
metering rate plays a crucial role in influencing compli-
ance, and single-lane ramps are generally better perform-
ing than dual-lane ramps in maintaining higher
compliance rates and lower violation counts.

An independent variable that provides a broader per-
spective is the concept of rate capacity ratios, calculated
as the ratio of ramp volume to metering rates. The data
are fitted with a square root function to illustrate the
overall trend of noncompliance instances. The square
root function was chosen because it effectively captures
the relationship between noncompliance and rate capac-
ity ratio increases, particularly in a visual context. This
approach helps to understand the mathematical nature
of the relationship between the rate capacity ratio and
noncompliance, which is valuable for guiding future
modeling efforts in this study. Figure 8a and b
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Figure 8. Relationship between compliance metrics and rate capacity: (a) violation count versus rate capacity; and (b) compliance rate

versus rate capacity.

demonstrate that the peak number of noncompliant
vehicles occurs when the rate capacity ratio is between
0.85 to 0.9, indicating ramp volumes are approximately
85% to 90% of the metering rate’s specified volume.
Across all compliance metrics, the rate capacity ratio
reinforces previous findings on metering rate,

highlighting that dual-lane ramp meters tend to exhibit
higher noncompliance rates.

Figure 9a and b, display boxplots to examine the com-
pliance metrics across the four routes within the study
network and the effect of ramp meter type. Figure 9a
reports no instances for single-lane ramps on L-202,
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while Figure 9 does because there were no detector-
reported instances of noncompliance on L-202.
Conversely, the compliance rate is based on volume and
compliant vehicles, resulting in a display of 100%.
Across all routes, dual-lane ramp meters consistently
exhibited lower compliance and higher instances of viola-
tions compared with their single-lane counterparts. An
exception is observed in the L-101 route. Here, the med-
ian value of violations per lane for dual-lane ramps
shows few noncompliant vehicles. However, when incor-
porating vehicle volume into the compliance metric (as
in compliance rates), dual-lane ramps on L-101 still exhi-
bit higher noncompliance, thus aligning with the findings
of other routes. Furthermore, this observation highlights
the importance of using a holistic approach and incor-
porating multiple compliance metrics.

The previous analysis indicates that there are likely
spatial implications for the compliance of ramp meters in
the study freeway network. Figure 10 shows the averaged
values for violation counts at each ramp meter location.
There is no map to display the compliance rate because
it is simply the proportion of non-violators and yields a
very similar figure. Notably, L-101, previously found to
display higher median levels of violation count and com-
pliance rate than other routes, shows high levels of com-
pliance. The location where L-101 and I-17 connect is
the only location on this route where the compliance rate
drops significantly. This speaks to the interaction effects
between routes. Furthermore, I-17, comprised mainly of
dual-lane ramp meters and located in a dense urban area,
has the highest count of violations and lowest compli-
ance rate. However, when looking at L-202, comprised
of both dual-lane and single-lane ramp meters, the dual-
lane locations continue to yield worse levels of compli-
ance. This likely speaks to the effects of ramp meter type
as opposed to spatial characteristics.

6mi 100
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101/ @ 51
:
17 352
Average Violation Count Type
PerLane Per 1I5Min. @ pual A single

0 2 4 6 8

Figure 10. Map of average violation count.

Regression Analysis

The OLS were fit to evaluate factors influencing viola-
tion counts and compliance rates. The initial consider-
ation for independent variables stemmed from insights
gained during EDA, which highlighted variables such
as the square root of the rate capacity ratio, volume,
and metering rate as having a significant relationship
with the compliance metrics. To further ensure the
absence of multicollinearity, a variance inflation factor
(VIF) test was conducted, and any variable exceeding a
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Table 2. Model Regression Results

Violation Counts Model

Compliance Rate Model

Std Std
Variables Estimate Error P-Value Estimate Error P-Value
Intercept (o) 0.906 *** 4.42e-2 <2e-16 0.905 *** 2.28e-3 <2e-16
L-101 (B)) 0.687 *** 1.51e-2 <2e-16 -2.49e-2 *** 7.40e-4 <2e-16
[Base = L-202]
SR-51 (3,) 0.193 *** 1.65e-2 <2e-16 N/A
[Base = L-202]
1-17 (B;) 0.183 *** 1.96e-2 <2e-16 -1.18e-2 *** 9.82e-4 <2e-16
[Base = L-202]
Dual-Lane (y,) 0.702 *** 1.57e-2 <2e-16 -5.99e-2 *** 7.89%e-4 <2e-16
[Base = Single-Lane]
VE (30) 3.20e-3 *** 1.32e-4 <2e-16 -1.48e-4 *** 6.76e-6 <2e-16
Volumepm, (3)) 3.94e-3 *** 7.57e-5 <2e-16 -1.75e-4 *** 3.94e-6 <2e-16
Speedm (37) -8.01e-3 *** 4.28e-4 <2e-16 4.90e-4 *** 2.27e-5 <2e-16
R (33) -2.73e-3 *** 8.07e-5 <2e-16 1.99e-4 *** 4.16e-6 <2e-16
RampLength (34) -8.72e-4 *** 2.69e-5 <2e-16 3.61e-5 *** 1.31e-6 <2e-16
UpstreamAADT (3s) -1.29e-5 *** 7.35e-7 <2e-16 8.92e-7 *** 3.5%e-8 <2e-16
Peak (3¢) 0.185 *** 1.57e-2 <2e-16 -7.48e-3 *** 8.16e-4 <2e-16
QP (37) 0.298 * 1.23e-1 0.015 -3.68e-2 *** 6.4%e-3 <2e-16

Note: AADT = average annual daily traffic; Significance level codes: “***” 0.001 “**” 0.01 “*” 0.05.

VIF threshold of 10 was removed, following common
practices in the literature (22, 23). Only one variable,
the rate capacity ratio, exceeded this threshold and was
therefore excluded from the models. When modeling
the violation count, the target variable ranged from 0
violations to 16 violations in a 15-min interval per lane.
Since it is impossible for there to be a negative number
of noncompliant drivers, we performed a log transfor-
mation on the violation count to ensure no negative
predictions. The violation count model as displayed by
Equation 5 yielded an adjusted R? value of 0.6757, indi-
cating that the model can explain 67.57% of the var-
iance in the data set, after adjusting for the number of
predictors.

Vi=a + BRoute + yType + d V! + 8 MLVolume
+ 8, MLSpeed + 3;3R' + d4Ramplength
+ 3sUpstreamAADT + 8¢Peak + 870

()

The compliance rate was modeled using the same
method incorporating backward elimination, and the
resultant adjusted R? value is 0.6394. The statistically
significant variables are shown in Equation 6:

Cl = a + BRoute + yType + 8V + 8 MLVolume
+ 8, MLSpeed + d;R' + d,RampLength
+ 3sUpstreamAADT + 8¢Peak + 87;0°

()

Dummy variables were introduced to model the cate-
gorical variables of route and type. Of the four routes,
L-202 was selected as the baseline route. Between the
two ramp meter types, single-lane ramps were the
selected baseline value. With regard to the time of day
that was considered, only the hours when ramp metering
occurred were included in the model from 6:00a.m. to
10:00 p.m. It is worth noting that certain variables, such
as the dummy variables for route (e.g., B;, B,, B3), have
multiple permutations corresponding to different levels
of the category, which become one-hot encoded. For
instance, 3 * Route represents each level of
B, * Specific Route Name, as shown in Table 2.

Table 2 presents the regression outputs for both the
violation count model and the compliance rate model,
summarizing their statistical significance. The backward
elimination process ensured that only variables signifi-
cant at the 5% level were included in the models,
although some variables were significant at higher levels.
Instances marked “N/A” indicate that a variable was sig-
nificant in one model but not the other. The intercept («)
of both models provides a value of compliance given all
other variables being equal to zero. It indicates that the
base level of compliance corresponds to a compliance
rate of 90.5% or around 1 violation per lane in a 15-min
bin.

The ramp meter type variable (y) indicates that, com-
pared with single-lane ramps, dual-lane ramp meters
decrease the compliance rate by around 6%, which corre-
sponds to an increase of approximately 0.7 drivers per
15-min per lane. This could have major implications for
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agencies considering constructing ramp metering signals
at single-lane or dual-lane ramp meters, encouraging
agencies to consider how compliance may affect the effec-
tiveness of the ramp metering signals based on the type
constructed.

The previously discussed variables were one-hot
encoded variables and are directly related to the compli-
ance metrics, while the following variables discussed are
numeric and require the estimate to be multiplied by the
variable itself. For instance, a ramp volume of 500 vehi-
cles per 15-min per lane will increase the number of vio-
lations by around 1.6 (estimate from the count model
times the ramp volume: 0.00320 X 500).

The ramp volumes per lane and the mainline freeway
volumes both had positive estimates for the violation
count and negative estimates for the compliance rate
model, indicating that higher volumes on the ramp and
the mainline freeway both result in a proportionally
increasing number of violations. This is confirmed by the
negative estimates for the compliance rate model that
highlight how higher volumes result in a lower compli-
ance rate. This is reasonable because higher volumes may
suggest the presence of more impatient drivers deliber-
ately running the red light (2, 24, 25). Additionally, previ-
ous research has shown that violations can be infectious,
with one leading to many, particularly in high-volume
traffic (3). A probable explanation for this would be
impatient drivers, who are frustrated by waiting in a
queue for an extended period, while lower volumes might
result in a lower proportion of compliant vehicles, possi-
bly as a result of a reduced sense of accountability or a
diminished perception of social observation from other
drivers.

The mainline speed was a factor significantly affecting
compliance. The results from both models indicate that
higher speeds on the mainline freeway were associated
with higher compliance rate and a lower number of vio-
lations. A possible explanation for this would be that
higher speeds on the mainline freeway are correlated
with less congestion on the freeway resulting in a higher
metering rate set by the Arizona DOT adaptive metering
algorithm. If the rate is higher, drivers may be more will-
ing to abide by the meter as the wait time is not as high.
While mainline speeds were statistically significant, ramp
speeds were removed because of insignificance in predict-
ing compliance, as determined by a p-value above the
5% threshold in our backward elimination process.
Practically, this suggests that speed management on
ramps may not effectively address noncompliance issues,
potentially guiding practitioners to prioritize other vari-
ables such as ramp length or metering rate.

The metering rate demonstrates a positive correlation
with compliance rate and a negative correlation with
violation count. For example, a metering rate of

400 wvehicles per 15min results in approximately
8% (0.000199 X 400 = 0.08 =~ 8%) increased compliance,
or around one additional violation (0.00273 X
400 = 1.01 =~ 1). Ramp length and upstream AADT also
show positive estimates for both models. One possible
explanation to explain why longer ramps are associated
with greater compliance is that longer ramps allow more
time for drivers to notice and respond to meters. Prior
research has emphasized the importance of sight distance
and visibility in reducing red-light running, a principle
that likely applies to ramp meters as well (26, 27). With
regard to AADT, higher AADT may indicate the pres-
ence of platooning. Previous studies have shown that
small platoons can increase compliance, provided that
the leading vehicle comes to a stop (9).

The peak hour variable indicated an increase in the
number of violations, and a decrease in compliance rate.
This is an intuitive result as higher volumes and greater
driver impatience is expected during peak hours. Percent
queueing was significant in predicting both violation
counts and compliance rate. This too is an expected
result as queueing at ramp meters is also likely related to
impatient driving behavior, such as running red lights.

The route variable (B) plays a significant role in evalu-
ating ramp meter compliance. Using L-202 as the refer-
ence variable, the results of the violation count model
highlight positive estimates, implying that all other routes
have various site-specific characteristics (e.g., demo-
graphics, road conditions, geometric characteristics) that
increase the number of violations. Specifically, L-101
shows a substantial increase in violations of about 0.7 per
lane, while SR-51 and I-17 show a smaller increase of
approximately 0.19. Notably, violation count and com-
pliance rate are inverse metrics: an increase in violations
typically corresponds to a decrease in compliance.
However, SR-51 was found to be insignificant in the
compliance rate model, meaning that while the absolute
number of violations on SR-51 may be higher, its compli-
ance rate—when accounting for volume—is not signifi-
cantly different from that of L-202. This distinction
highlights that violation count measures magnitude,
whereas compliance rate provides a volume-adjusted per-
spective on driver behavior at ramp meters.

With the regression analysis results providing insights
into the influence of key variables on ramp meter com-
pliance, several practical implications emerge for trans-
portation practitioners and policymakers. For instance,
dual-lane meters, which are often favored for their queue
management capabilities and vehicle throughput, show a
tendency to reduce compliance rates. This trade-off
between operational benefits and compliance levels is
critical when planning new ramp installations.
Additionally, the observed link between increased ramp
length and reduced violations suggests that design



Geffen et al

13

optimizations, such as ramp length adjustments, may be
more effective than ramp speed management in enhan-
cing compliance. These findings offer agencies actionable
guidance, helping to prioritize interventions that balance
operational demands with compliance and safety
outcomes.

Spatial Transferability

From the EDA and the regression analysis, it is evident
that the violation count model is most likely to yield the
highest accuracy in predicting compliance. Furthermore,
the compliance rate can be derived from the violation
count. This is crucial since the violation count is the only
compliance metric that can be directly derived from the
loop detectors and ramp controllers. Further, the regres-
sion analysis demonstrated that the violation count
model explained a higher proportion of variance com-
pared with the compliance rate model, as indicated by a
higher R? value.

To validate our findings, we retrained the model,
excluding the route variable from the independent vari-
ables. This approach aims to study the transferability of
our results within Arizona and assess whether the factors
affecting ramp meter compliance identified in this study
can be effectively applied in future research on real-time
prediction. This would enhance the support provided to
transportation departments beyond the contributions of
this study. The altered model equation is shown below in
Equation 7:

Vi=a + yIype + 8V + 8 MLVolume + d,MLSpeed

c

+ 83R' + d4RampLength + 8sUpstreamAADT
+ d¢Peak + 3;0,

(7)

Notably, in removing the route variable, all other
selected variables were statistically significant to the 5%
level. To evaluate the model, fivefold cross-validation
was used, the training-validation data set was divided
into five equal parts. This training-validation data set
was comprised of ramp meter data from I-17, L-202, and
L-101, excluding SR-51 to test for spatial transferability
and generalizability. For each fold, the model was trained
on four of the parts and validated on the remaining part.
The data splits were randomly sampled and not based on
any timestamp-specific or route-specific characteristics.
This process was repeated five times, each time with a dif-
ferent fold as the validation set. The average R* value
from cross-validation was 0.6595, suggesting that even
without the route variable, the model could effectively
interpret a significant portion of the variance.

The model was then retrained on all the available
training data. As mentioned, this training data comprised

all ramp meter data excluding SR-51. When this simpli-
fied model was applied to the unseen SR-51 corridor, the
model performed well in predicting the number of viola-
tions in a 15-min period per lane (V}), although it
struggled when the number of violations increased to a
high number, as indicated by the dispersion observed in
the Figure 11 true versus predicted plot. The relatively
high R? value in the transferability analysis indicates the
model is fairly generalizable, holding promise for predict-
ing violations at ramp meters across different locations.
Furthermore, it suggests potential for practical applica-
tion in predicting violations at ramp meters even before
deployment. However, future improvements are needed
to achieve the level of predictive accuracy required for
optimal use by agencies.

Conclusions

Ramp meters are designed to manage traffic flow and
reduce delays by controlling the rate at which vehicles
enter highways. Many transportation agencies now need
support in evaluating ramp meter compliance, as non-
compliance can undermine the benefits of ramp metering
and increase safety risks and environmental impacts.
Agencies face limitations in collecting extensive driver
behavior data to analyze compliance. This has led to
studies focusing on few ramp metering locations, shorter
study periods, and analysis on the compliance rates with-
out a comprehensive look at what influences driver com-
pliance to the ramp metering signals.

The objective of this study was to analyze and deter-
mine factors that may lead to noncompliance of
network-wide permanent ramp meters. This study
involved four corridors and 24 ramp meters across the
Phoenix Metropolitan Area. Two months of controller
event—based data and traffic data were collected for the
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Figure I 1. Actual versus predicted values of the violation count
model.
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analysis and were supported with the geometric attri-
butes data. Two compliance metrics were used to analyze
various features of compliance: violation count and com-
pliance rate. The methodology involved mapping the
controller event-based data and linking it to the traffic
volume data, before the statistical and spatial transfer-
ability analyses.

An EDA revealed many possible patterns in the rela-
tionship between ramp length, volume, metering rate,
and so forth, and the compliance metrics. With a better
understanding of the factors that influence noncompli-
ance, modeling was conducted. Results revealed that
higher volumes and lower metering rates are often corre-
lated with higher noncompliance. With regard to the rate
capacity ratio, although it may intuitively seem that most
cases of noncompliance would occur when the rate
capacity ratio is greatly exceeded, most violations
occurred around 0.9. Furthermore, the results under-
score the complexity and variability of ramp meter com-
pliance across different ramp types and routes. The
positive estimate for dual-lane ramps suggests a notable
increase in violation counts. This finding offers transpor-
tation agencies an important perspective: while dual-lane
ramps are highly effective for managing queue lengths,
they may also be associated with increased noncompli-
ance, which could influence the overall benefits of ramp
metering. Another interesting finding is the insignificance
of ramp speed on noncompliance, suggesting that ramp
speed management may not significantly enhance com-
pliance. However, future research could explore the
impact of sight distance on compliance, given that longer
ramps are associated with better compliance.

Analyzing compliance metrics across routes reveals
the benefits of employing a secondary metric for evalua-
tion. While compliance rates offer a balanced perspective,
using violation counts provides insight into the magni-
tude of noncompliance. Regression analysis showed that
variables in the violation count model generally had
opposite signs compared with those in the compliance
rate model, except for SR-51, highlighting significant lev-
els of noncompliance on this particular route. The find-
ings from the transferability analysis demonstrated that
the simplified violation count model has significant
potential, despite room for improvement. Training on
three routes and predicting violations on an unseen route
(SR-51) proved effective, suggesting the model’s general-
izability and utility in traffic management. This case
study reinforces the model’s potential to predict ramp
meter violations across various corridors effectively.

While this study focuses on ramp meters in the Phoenix
Metropolitan Area, which encompasses various cities and
offers a wide range of urban conditions and driver beha-
viors, the findings may not fully generalize to other states
with different traffic cultures and regulations. In addition,

this analysis did not account for factors such as signal tim-
ing adjustments, the formation of multiple-vehicle pla-
toons, varying vehicle-release methods, or enforcement
measures that could influence compliance. However, areas
with similar ramp metering configurations and traffic
characteristics can apply these findings to assess and
improve compliance. Furthermore, the results from this
study can provide agencies with methods to analyze their
existing ramp meters and make informed, actionable deci-
sions with regard to where and when to implement ramp
metering. Future research could focus on: a) developing
predictive models to forecast noncompliance at ramp
meters; b) evaluating seasonal or weather-related varia-
tions in compliance; ¢) examining the impact of different
vehicle-release methods and enforcement policies on com-
pliance rates; and d) assessing how noncompliance may
affect the safety and efficiency benefits typically associated
with ramp meters. These areas could support agencies in
refining metering strategies to enhance traffic flow and
safety under diverse conditions.
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