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Machine learning-based optimization framework for vehicle reidentification 
between detectors at signalized intersections

Pramesh Pudasainia , Henrick Hauleb , and Yao-Jan Wua 

aDepartment of Civil and Architectural Engineering and Mechanics, The University of Arizona, Tucson, Arizona; bDepartment of Civil 
and Environmental Engineering, The University of Alabama in Huntsville, Huntsville, AL, USA 

ABSTRACT 
Signalized intersections are equipped with advance and stop-bar detectors that detect 
vehicles at discrete locations without linking or reidentifying them over the approach area. 
Accurate tracking and reidentification of vehicles between these detectors could provide 
valuable driver behavior data, especially during the safety-critical yellow onset periods. 
However, reidentifying vehicles using non-visual detection data is challenging and not well- 
explored, with existing analytical models relying on a priori-calibrated parameters. To this 
end, we propose a machine learning (ML)-based reidentification framework for accurately 
tracking vehicles over the advance and stop bar loop detectors. The framework comprises 
two major components: advanced ML and deep learning (DL) models for accurately predict
ing the travel time between detectors and a novel optimization model that utilizes these 
predicted travel times and actuation events for reidentifying vehicles. Tests carried out on a 
major intersection approach in Phoenix, Arizona, showed that the optimization framework 
based on neural oblivious decision ensemble (NODE) reidentified vehicles even at congested 
conditions with 94.5% precision and 92.1% recall, outperforming state-of-the-art analytical, 
conventional ML, and comparable DL models. The low false alarm rate and high recall of 
this reidentification framework open avenues for obtaining valuable driver behavior data at 
the yellow onset to analyze stop/go behavior, dilemma zone entry/exit, red light running, 
and crossing conflicts at signalized intersections.
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Introduction

Vehicle reidentification is a core component of intelli
gent transportation systems (ITS), facilitating auto
matic vehicle tracking and identification to enhance 
traffic management and safety (Wang et al., 2019; Yi 
et al., 2025). Conventional vehicle reidentification pri
marily focuses on traffic surveillance and relies on 
images captured from multiple cameras with non- 
overlapping views (Khan & Ullah, 2019; Zapletal & 
Herout, 2016; Zhang et al., 2023). Practical applica
tions in this domain of vehicle reidentification include 
live traffic monitoring, suspicious vehicle tracking, 
travel time prediction, intelligent parking, vehicle 
counting, and automatic toll collection (Gazzah et al., 
2017; Hu et al., 2024; Khan & Ullah, 2019; Qian et al., 
2024; Wang et al., 2019; Xiong et al., 2021; Zhang 
et al., 2022). In contrast to such reidentification based 
on visual data for traffic surveillance purposes, this 
study addresses the unique challenge of reidentifying 

vehicles using non-visual detection data, with a focus 
on obtaining valuable driver behavior data at signal
ized intersection approaches.

Signalized intersections in the United States are 
predominantly monitored using wired inductive loops 
or video-based sensors installed at two key locations: 
the advance detector, situated a certain distance 
upstream from the intersection stop line, and the stop 
bar detector, positioned right at the intersection stop 
line (Chandler et al., 2013; Urbanik et al., 2015). In 
this typical installation layout, vehicles approaching an 
intersection are detected at discrete locations, but the 
absence of a linking mechanism between detectors 
prevents accurate tracking of individual vehicles across 
the approach area. This limitation hinders efforts to 
capture valuable driver behavior data, particularly in 
safety-critical scenarios such as decision-making dur
ing the yellow onset (Pudasaini, Haule, et al., 2025). 
Collecting such behavioral insights is currently chal
lenging due the limited availability of crowdsourced 
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trajectory data (Kandiboina et al., 2024; Pudasaini, 
Pathivada, et al., 2025) and the reliance on labor- 
intensive, manual extraction of driver behavior data 
from field-recorded video footage (Abdelhalim et al., 
2021; Do et al., 2023; Li & Wei, 2013; Rahman et al., 
2021). Moreover, reidentification is particularly chal
lenging with non-visual data from widely deployed 
inductive loop detectors, which lack the richness of 
visual tracking methods to capture detailed vehicle 
features. Unlike traffic surveillance cameras, conven
tional loop detectors provide only discrete actuation 
events, making it difficult to link vehicles across 
detectors without advanced predictive models capable 
of handling the inherent variability in driver behavior 
and traffic conditions. Therefore, a data-driven 
approach to reidentify vehicles between the advance 
and stop bar detectors could provide an automated 
and scalable alternative to obtain driver responses and 
driving behavior data at an intersection approach.

Several studies have highlighted the safety implica
tions of reidentifying vehicles during the yellow onset 
when drivers make stop/run decisions (Chen et al., 
2017; Ding et al., 2016; Liu et al., 2017; Lu et al., 
2015; Ren et al., 2016; Wu et al., 2013). Despite the 
realized safety implications, the uniformity in detector 
installation layout, and the abundance of high- 
resolution event data, methodological advancements 
in accurately tracking and reidentifying vehicles across 
detectors at an intersection approach remain limited. 
Recent advances in traffic surveillance-focused vehicle 
reidentification have observed a huge shift from tradi
tional machine learning (ML) to deep learning (DL)- 
based architectures (Amiri et al., 2024; Ning et al., 
2025; Qian et al., 2024; Wang et al., 2019; Yi et al., 
2025). In contrast, existing studies on reidentifying 
vehicles using non-visual detection data are not only 
limited but also constrained to analytical reidentifica
tion techniques. Multiple studies have proposed rei
dentification methodologies using inductive signatures 
from loop detectors but primarily for estimating travel 
times along corridors (Jeng et al., 2010; Lin & Tong, 
2011; Wang et al., 2014). However, to the best of the 
authors’ knowledge, only a handful of studies have 
addressed vehicle reidentification using non-visual 
loop detector data. Moreover, these methods were for
mulated as an analytical problem to match actuation 
events between detectors (Chen et al., 2017; Ding 
et al., 2016; Liu et al., 2017; Lu et al., 2015; Pudasaini 
et al., 2024; Ren et al., 2016; Wu et al., 2013). Given 
the importance of understanding drivers’ behavior at 
the yellow onset, these studies were primarily focused 

on analyzing yellow/red light running, stop/go behav
ior, dilemma zone, or crossing conflicts.

Wu et al. (2013) reidentified detection events at the 
stop bar and advance detectors based on travel time 
estimates between the detectors, where speed was 
computed relying on an a priori calibrated effective 
vehicle length. A pair of events was considered a 
“match” if the observed travel time for the pair fell 
within the range of estimated travel time ± 2 s, 
accounting for the variances in effective vehicle 
lengths and deceleration rates. Lu et al. (2015) pro
posed a similar matching algorithm to reidentify 
vehicles between the stop bar and downstream 
entrance detectors. For each candidate reidentification 
pair, the authors introduced a match strength func
tion: the reciprocal of the difference in observed and 
expected travel time. The reidentification pair with the 
highest match strength was considered in case of mul
tiple matches. Ren et al. (2016) and Ding et al. (2016) 
implemented a window-searching method to reiden
tify vehicles between advance and stop-bar detectors. 
For each advance detection, this method deployed a 
“time window”–based on minimum and maximum 
travel time between detectors–within which a detec
tion at the stop bar location can be identified. The 
minimum travel time is estimated assuming a max
imum acceleration rate, whereas the maximum is 
computed assuming the vehicle fully stops at the stop 
bar. Reidentification between detectors was conducted 
based on the highest match strength in Ren et al. 
(2016) and the lowest percentage error between esti
mated and observed travel time in Ding et al. (2016). 
Similarly, Liu et al. (2017) proposed a matching algo
rithm between the stop bar and downstream entrance 
detectors for estimating crossing conflicts at signalized 
intersections, adopting an approach similar to Wu 
et al. (2013). Chen et al. (2017) implemented an ana
lytical model similar to Ding et al. (2016) to reidentify 
vehicles between advance and stop bar detectors for 
estimating red-light running frequency. Recently, 
Pudasaini et al. (2024) proposed a rule-based algo
rithm for analytically matching actuation events 
between advance and stop-bar detectors using prede
fined, intersection-specific ideal travel times for stop
ping and running.

Despite minor differences in searching and classify
ing vehicle reidentification pairs, a common theme in 
all aforesaid studies was confining reidentification to 
an analytical matching task using kinematic models of 
motion. As a result, these analytical reidentification 
models suffer from two major drawbacks. First, their 
travel time estimation is based on either predefined 
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parameters or computing speed over each detector 
using an a priori known effective vehicle length. Such 
reliance on constant, predefined parameters and the 
requirement of the parameters’ pre-calibration for a 
specific site limit the transferability of these analytical 
methods to new intersections, detector configurations, 
and traffic dynamics. Second, besides Pudasaini et al. 
(2024), the accuracy of analytically matching events 
between detectors was not evaluated or reported in 
any study. In summary, despite the enormous poten
tial to yield valuable driver behavior information, 
developing a robust vehicle reidentification framework 
based on non-visual detection data remains a signifi
cant research gap in the existing literature.

This study formulates a novel ML-based optimiza
tion framework for reidentifying vehicles between the 
advance and stop bar detectors using non-visual 
detection data. The framework focuses on generating 
accurate datasets of driver behavior and decision- 
making through vehicles reidentified during the 
safety-critical yellow onset periods to aid studies on 
traffic operations and safety. The proposed reidentifi
cation framework comprises two major components: 
prediction of travel time between detectors and vehicle 
reidentification based on actuation events over detec
tors. We test six state-of-the-art ML and DL models 
for accurately predicting the travel time between 
detectors and formulate an optimization framework 
that utilizes these predicted travel times for reidentify
ing vehicles. Furthermore, we compare and discuss 
reidentification results from the proposed framework 
with three existing analytical methods. The major con
tributions of this study are threefold. First, it proposes 
a highly accurate and robust data-driven framework 
for vehicle reidentification using non-visual detection 
data, addressing a critical gap in the existing literature. 
Second, it provides a scalable and automated alterna
tive to labor-intensive manual methods for collecting 
valuable driver behavior data, particularly during 
safety-critical yellow onset periods. Third, it advances 
the state-of-the-art in ITS by demonstrating the 
potential of high-resolution event data in tracking 
vehicles for improving intersection safety and traffic 
management.

Data collection and processing

Study intersection

The westbound approach of Indian School Rd and 
19th Ave in Phoenix, Arizona, was selected as the 
site for testing the proposed framework for vehicle 
reidentification. Indian School Rd is one of the 

busiest arterials in Phoenix, providing a direct con
nection between the I-17 highway and the USA 51 
highway. In the vicinity of 19th Ave, Indian School 
Rd had an annual average daily traffic of approxi
mately 45,000 vehicles in 2023. Timestamped traffic 
data from the intersection’s signal controllers–includ
ing actuations on these detectors–is archived in real- 
time by the City of Phoenix Street Transportation 
Department (Pudasaini et al., 2024). Besides being 
equipped with lane-by-lane loop detectors at the 
advance and stop bar locations, video recordings 
from a traffic camera were available for specific peri
ods to validate the signal changes and detector actua
tions, making this intersection an ideal test site for 
vehicle reidentification.

Figure 1 presents the intersection approach with 
the layout and configuration for lanes and detectors. 
The approach has lane-by-lane loop detectors on three 
through lanes at the advance and stop bar locations. 
Advance detectors are 5 ft long, whereas stop bar 
detectors are 40 ft long. The distance between the stop 
line and the advance detector is 300 ft. The speed limit 
of the approach is 35 mph.

High-resolution event data collection and 
processing

High-resolution events in the form of timestamped 
logs from the signal controller and detectors were col
lected from TransSuite, a centralized traffic manage
ment system archiving real-time data from the City of 
Phoenix intersections (Pudasaini et al., 2024). 
Timestamped events comprise signal phase changes, 
detector actuations, and communication attempts at a 
resolution of 0.1 s. We divided the available high- 
resolution event datasets into two groups. The first 
dataset, collected for 15.5 h from three weekdays (6/ 
12/2022, 6/14/2022, 3/27/2023), also had concurrent 
ground-truth video recordings archived in the 
TransSuite system. The availability of both event data
sets and concurrent videos meant this dataset could 
be used to generate “ground-truth reidentification 
(ReId) pairs” and evaluate the accuracy of reidentified 
vehicles. The second dataset, collected for 14 days (1st 

and 3rd weeks) in January 2023, did not have concur
rent video recordings available. Owing to the large 
sample of high-resolution events, this dataset was 
used to generate “inferred ReId pairs” for training 
ML/DL models. We discuss the details of data proc
essing in the following section. The Methodology sec
tion delves into generating inferred and ground-truth 
ReId pairs for model training and testing.
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Figure 2 presents the overall data processing in 
three steps: pre-processing raw high-resolution data, 
processing signal phase change and detector actuation 
events, and filtering actuation events at the yellow 
onset. The raw data were first segregated into individ
ual hours for data pre-processing. An assessment of 
communication loss and data continuity plots for sig
nal phase changes and detector actuations provided 
data quality checks for further processing. Then, the 
two input datasets–signal phase change and detector 
actuation events–were loaded, and different parame
ters of interest were computed.

Table 1 lists the indices, sets, and parameters used 
throughout this study. We assume each cycle c starts 
on the yellow indication for processing events. The 
timestamps of yellow (Ty

c ), red (Tr
c ), and green (Tg

c ) 
indications for each cycle are obtained from the signal 
phase change dataset. After assigning relevant indices, 
both input datasets were merged and split by lane to 
compute actuation-related parameters. Let the index 
k : k 2 K denote any actuation in general for data 
processing. Indices i : i 2 I, I � K and j : j 2 J, J � K 
represent respective actuations at the advance and 

stop bar detectors. Let To
k and Tf

k be the timestamps 
of actuations “on” and “off” for each detector. 
Detector occupancy time (sD

k ), headway (sH
k ), and gap 

(sG
k ) as shown in Equations (1–3), respectively, were 

computed for each actuation and detector.
Next, the signal change during actuation 

(SCAk : SCAk 2 fYY , YR, RR, RG, GG, GYg) is an 
important parameter denoting a combination of 
changes in signal indication when a particular actu
ation is turned “on” and “off” (Pudasaini et al., 2023). 
For instance, SCAi 2 fGGg indicates that the advance 
detector actuation started on green and ended on 
green; SCAj 2 fRGg indicates that the stop bar 
detector actuation started on red and ended on green. 
Together, SCAk and sD

k yield information regarding 
whether a vehicle crossed or stopped over a detector. 
For example, SCAk 2 fGGg usually have a low sD

k at 
both advance and stop bar detectors, implying that 
such actuations crossed the detector. The most useful 
case is SCAj 2 fRGg; which usually has a high sD

j ;

meaning such stop bar actuations correspond to 
vehicles actuating the detector on red, stopping before 
the stop line, and leaving the detector on green. 

Figure 1. Study intersection with detector layout and configuration.
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Interested readers are referred to Pudasaini et al. 
(2023) for a detailed discussion and empirical analysis 
of SCAk with respect to sD

k ; sH
k ; and sG

k parameters.
Once actuation-related parameters are computed on 

each lane, the datasets are merged again for all through 
lanes. Let AIYk; computed using Equation (4), denote 
the arrival time in yellow for actuation k. AIYk ¼ 3;
for instance, indicates that the vehicle arrived at a 
detector 3 s after the signal turned yellow; similarly, 
AIYk ¼ −2:5 indicates the vehicle’s arrival at the 
detector 2.5 s before the signal turned yellow. Arrival 
volume is also computed for each cycle and 15-min 
period. In the final step of processing events, the 

dataset is filtered for all events with actuation “on,” 
and each actuation is assigned an actuation index.

sD
k ¼ Tf

k − To
k 8k (1) 

sH
k ¼ To

kþ1 − To
k 8k (2) 

sG
k ¼ To

kþ1 − Tf
k 8k (3) 

AIYk ¼
To

k − Ty
c , SCAk 2 fYY , YR, RR, RGg

To
k − Ty

cþ1, SCAk 2 fGG, GYg 8k
�

(4) 

Upon processing all signal phase change and actu
ation events, we filter only those actuations which are 

Figure 2. Data processing flowchart.
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susceptible to the yellow onset while approaching the 
intersection. At the advance location, we filter actua
tions based on two factors: a) yellow indication interval 
of 3.6 sec and b) approximate ideal travel time from 
the advance detector to the intersection stop line of 
6.0 sec, i.e., traveling 310 ft at 35 mph. Hence, retaining 
advance actuations with ðAIYi � 3:6, 8SCAi 2

YY, YR, RR, RGf gÞ [ ðAIYi � −6, 8SCAi 2 GG, GYf gÞ

captures all vehicle arrivals at the yellow onset from 
the intersection stop line to a point 3.6 s beyond the 
advance location. Similarly, at the stop bar location, we 
first filter out actuations with SCAj 2 GGf g as these 
vehicles crossing the stop bar on green are not influ
enced by the yellow onset. Then, we retain the stop bar 
actuations with ðAIYj � 12,8SCAj 2 YY, YR,f

RR, RGgÞ [ ðAIYj � −1:5, 8SCAj 2 GYf gÞ: AIYj �

12,8SCAj 2 YY, YR, RR,f RGg ensures potential 
matches for vehicles that decelerate downstream of the 
advance location and decide to stop before the intersec
tion stop line. On the other hand, AIYj �

−1:5, 8SCAj 2 GYf g is for retaining stop bar actua
tions that face the yellow onset between the intersec
tion stop line and the rear end of the stop bar detector. 
The final output of the overall data processing was a 
merged dataset containing parameters and indices for 
sets of filtered actuations at the advance and stop bar 
locations.

Ground-truth data collection

The video recordings available for 15.5 h were carefully 
reviewed to obtain a ground-truth dataset of ReId 
pairs, which will later be used to validate the perform
ance and robustness of the proposed vehicle reidentifi
cation framework. Two research specialists were 
trained to reidentify vehicles between the advance and 
stop bar detectors at the yellow onset. From video 
observation, the focus was first identifying vehicles 
arriving at the advance detector with −6 � AIYi � 3:6, 
i.e., up to 3.6 s into the yellow and 6 s before the indi
cation turned yellow. The corresponding actuation 
indices at the advance and stop bar detectors were 
noted for each identified vehicle that made a through 
movement to the stop bar. Lane changes on the 
through lanes were also considered while recording 
these pairs of actuation indices. As the final output, we 
obtained 580 ground-truth ReId pairs for vehicles rei
dentified between advance and stop bar detectors. Only 
15 ReId pairs out of the 580, corresponding to 2.6% of 
the total ground-truth pairs, involved lane changes 
while approaching the intersection at the yellow onset.

Methodology

The major contribution of this study is formulating a 
novel ML-based optimization framework for vehicle 

Table 1. Notations used in this study.
Notation Description

Indices
k Any detector actuation
i, j Detector actuation at advance and stop bar detectors
c Cycle
o, f Detector “on” and “off” events
y, r, g Yellow, red, and green indication events
Sets
SCAk Signal change during actuation k; SCA 2 fYY, YR, RR, RG, GG, GYg
Parameters
Ty

c , T r
c , T g

c Timestamp of yellow, red, and green indications for cycle c
To

k , Tf
k Timestamp of actuation “on” and “off” for vehicle k

sD
k Occupancy time for actuation k (sec)

sH
k Time headway between detector actuation k and kþ 1 (sec)

sG
k Time gap between detector actuation k and kþ 1 (sec)

AIYk Arrival in yellow of actuation k at a detector (sec)
tmin, tmax Minimum and maximum travel time to constrain the search space for vehicle traveling between rear ends 

of advance and stop bar detector (sec)
t
0

min, t
0

max Minimum and maximum travel time to constrain the search space for vehicle traveling between extreme 
ends of advance and stop bar detector (sec)

DSij Distance between extreme ends of detectors (ft)
vadv Velocity at advance detector (ft/sec)
amax Maximum acceleration (ft/sec2)
xij; yij Candidate reidentification pair (i, j) obtained from manual inference and video observation
Eij Error associated with candidate reidentification pair (i, j)
Lij Lane change for candidate reidentification pair (i, j)
tij Actual travel time for reidentification pair (i, j) (sec)
tpred

i Predicted travel time for advance actuation i (sec)
ypred

ij ; yground
ij Predicted and ground truth reidentification pair (i, j)
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reidentification between detectors at an intersection 
approach using non-visual detection data. Figure 3
presents a high-level architecture of the proposed 
framework, which encompasses five steps: (1) generat
ing sets of candidate ReId pairs, (2) generating 
inferred and ground-truth ReId pairs, (3) feature 
engineering, (4) training/testing ML models for travel 
time prediction, (and 5) reidentifying vehicles using 
an optimization model. The following sections discuss 
these steps in detail.

Generating candidate reidentification pairs

The data processing procedure yielded two sets I and 
J of advance and stop bar detector actuations at the 
yellow onset. For vehicle reidentification between 
these two sets, we first seek to generate a set of candi
date ReId pairs between I and J by constraining the 
search space for any advance actuation i. This con
straining procedure, similar to Pudasaini et al. (2024), 
has two subtle differences from the “window- 

searching” method adopted by Lu et al. (2015) and 
Chen et al. (2017). The proposed framework estimates 
a search space and implements it for “all” i based on 
the minimum and maximum values of travel time 
(tmin and tmax) between the “rear” ends of advance 
and stop bar detectors. The window searching 
method, on the other hand, implemented a time win
dow for “each” i based on the minimum and max
imum values of travel time (t0min and t0max) between 
the “extreme” ends, i.e., front end of stop bar and rear 
end of advance detectors. The focus here is on rear 
ends because the proposed vehicle reidentification 
methodology, unlike prior analytical methods, does 
not rely on stop bar detector information other than 
the timestamp at which the stop bar detector was 
actuated.

In the window-searching method, t0min and t0max 
were estimated using Equations (5) and (6), where 
DSij is the distance between the extreme ends of 
detectors, vadv is the velocity at the advance detector, 
and amax is the maximum acceleration rate of 6 ft/s2 

Figure 3. Proposed vehicle reidentification framework.
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as suggested by Long (2000). Assume a vehicle 
approaching the intersection at the yellow onset at a 
high velocity (say 50 mph) and crossing the intersec
tion stop line; this results in a t0min of 3.1 s. Similarly, 
consider a vehicle approaching the intersection at the 
yellow onset at a low velocity (say 30 mph) and stop
ping at the stop bar; this yields a t0max of 13.6 sec. 
Since tmin < t0min and tmax < t0max; we approximate 2.5 
and 13 s as the values of tmin and tmax between the 
rear ends of detectors to constrain the search space 
for each i. These limits made a good approximation 
in this study because empirical observation of ground- 
truth ReId pairs yielded similar limiting travel time 
values of 2.9 and 11.4 sec between the rear ends of 
detectors.

t0min ¼
2DSij

vadv þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vadv2 þ 2amaxDSij

p (5) 

t0max ¼
2DSij

vadv
(6) 

Next, for each advance actuation i, we look for a 
stop bar actuation j on the same lane within the tmin;

tmax travel time limits. We discard potential lane 
changes because we observed only 2.6% of vehicles 
changing lanes during the yellow onset. As a potential 
ReId pair, i can have multiple candidates in J. This 
procedure was implemented using a Python script, 
which resulted in a set of xij : xij 2 Xij; denoting a 
candidate ReId pair between i and j. As the final out
put, 14,848 pairs of xij were generated from the 

processed high-resolution dataset of 14 days, while the 
ground-truth dataset yielded 997 candidate pairs.

Generating inferred reidentification pairs dataset

The proposed vehicle reidentification framework relies 
on accurate travel time prediction between the 
advance detector and the rear end of the stop bar 
detector using information from only the advance 
location. Such travel time prediction problem necessi
tates a large training dataset, for which we manually 
examine each xij from the 14,848 candidate ReId 
pairs. Figure 4 explains this manual inference proced
ure with four examples, where each observation repre
sents a detector actuation color-coded with the SCA 
parameter. The x-axis in this figure represents the 
timestamp (minute and second) of detector actuation 
“on” at the 17th hour on 18 January 2023; the y-axis 
represents a combination of advance and correspond
ing stop bar detectors on a particular lane.

Figure 4(a) presents a simple example of a manual 
reidentification when only a few vehicles approach the 
intersection at the yellow onset. For illustration, this 
figure has the actuations labeled by an ID. Recall each 
advance actuation i has a set of candidate ReId pair 
xij on the same lane within the tmin; tmax travel time 
limit. For advance actuation index 50 on the right 
through lane, for instance, the candidate ReId set 
would be f50–60, 50–62g, indicating two potential 
candidates at the stop bar for reidentification. The 
50–60 and 50–62 ReId pairs correspond to travel 

Figure 4. Manual inference of reidentification pairs.
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times of 3.5 and 8.6 s, respectively. Based on the SCA 
of the stop bar actuations, ID 50 crosses the intersec
tion with either 60 or 62 as the ReId pair. As a travel 
time of 3.5 sec is logical to traverse a distance of 260 ft 
for ID 50, its ReId pair is identified as ID 60. Next, 
ID 52 has only one candidate ID at the stop bar, so 
52–62 is another ReId pair. 51–61, the only candidate 
pair on the left through lane, is inferred as a ReId 
pair. Like the example discussed above, manual infer
ence yields 7 ReId pairs for a more complex case of 
full inference, as shown in Figure 4(b).

Figure 4(c,d) presents examples of manual reidenti
fication when the number of vehicles approaching the 
intersection at the yellow onset is high. In such cases, 
easy manual inference of all candidate ReId pairs 
might not be possible. In Figure 4(c), for instance, the 
intuition of SCA and associated ideal travel time 
yields two ReId pairs each on the right through and 
left through lanes. However, the inference on the mid
dle lane is complicated as there are four advance 
actuations with only two stop bar actuations for 
potential reidentification. Here, any two advance 
actuations might have undergone a lane change to 
either the right-turn lane or left-turn lane or might 
have entered the intermediate driveway. Due to such 
ambiguity, no inference of a ReId pair is considered 
on the middle through lane. The case is similar in 
Figure 4(d), where only two ReId pairs can be intui
tively identified, while the reidentification of other 
candidate pairs is ambiguous.

The two research specialists manually reviewed 
plots similar to Figure 4 for manual inference of ReId 
pairs from the generated candidate sets. Only the 
ReId pairs that can be inferred with the intuition of 
SCA and ideal travel time were noted as an “inferred 
ReId pair”; the rest were ignored as the goal of this 
manual inference was creating a dataset sufficient for 
training travel time prediction between the rear ends 
of detectors. This laborious process resulted in review
ing 321 h of processed high-resolution event dataset 

plots, yielding 5,391 inferred ReId pairs with corre
sponding travel times. Note that the advance actuation 
parameters computed during the data processing step 
were carried over for each ReId pair.

Feature engineering

Based on the data processing carried out earlier, sev
eral features for travel time prediction are associated 
with a ReId pair. The 15-min and cycle volumes are 
representative of traffic volume or level of congestion 
at the intersection approach. Occupancy time, follow
ing headway, leading headway, and following gap are 
parameters computed from the detector actuation 
events dataset; these parameters consider the influence 
of following and leading vehicles while predicting 
travel time. The AIY, also computed during data 
processing, impacts travel time as a vehicle’s arrival 
before the yellow at the advance location indicates a 
higher likelihood of crossing the intersection; in con
trast, those arriving after the yellow tend to stop 
before the intersection stop line. Lane was categorized 
as a categorical variable with one-hot encoding to 
consider the effect of lane position on travel time. 
Similarly, the SCA parameter was also one-hot 
encoded as it directly influences travel time to the 
stop bar. The final feature for travel time prediction 
was the car-following effect. Brackstone and 
McDonald (1999) identified a commonly used thresh
old of 1.5 s for time headway to define car-following. 
Based on this limit, we categorized car-following at 
the advance detector as a binary variable for each 
ReId pair.

Table 2 summarizes the 13 features generated for 
5,391 inferred ReId pairs and 997 ground-truth ReId 
pairs for training and testing different ML-based mod
els for travel time prediction. The target variable is 
the travel time between the rear ends of detectors for 
each ReId pair.

Table 2. Summary of features for travel time prediction.
Category Feature names Feature description Feature type

Detector actuation volume_15 Arrival volume at advance location during 15-min interval Count
volume_cycle Arrival volume at advance location during a cycle Count
car_follow Car-following behavior at advance detector (1¼ yes, 0¼ no) Binary
occ_time Occupancy time over advance detector Continuous
headway_foll Headway between target and leading vehicle at advance detector Continuous
headway_lead Headway between target and following vehicle at advance detector Continuous
gap_foll Gap between target and leading vehicle at advance detector Continuous

Signal phase change and 
detector actuation

AIY Arrival time in yellow at advance detector Continuous
is_SCA_GY Signal change during actuation¼GY? (1¼ yes, 0¼ no) Binary
is_SCA_YY Signal change during actuation¼ YY? (1¼ yes, 0¼ no) Binary
is_SCA_YR Signal change during actuation¼ YR? (1¼ yes, 0¼ no) Binary

Lane position is_lane_R Lane position¼ right? (1¼ yes, 0¼ no) Binary
is_lane_M Lane position¼middle? (1¼ yes, 0¼ no) Binary
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ML and DL models for travel time prediction

We employed six ML/DL models for travel time pre
diction such that the predicted travel time can be 
used to reidentify vehicles between the advance and 
stop bar detectors. Model selection was based on the 
tabular data structure and the absence of spatial and 
temporal dependencies among generated features. 
These models spanning conventional ML approaches, 
tree-based ensembles, and DL architectures are, for 
brevity, briefly introduced below.

Support Vector Regression (SVR)
SVR is a conventional supervised learning algorithm 
that extends the principles of support vector machines 
(SVM) to regression tasks. It maps input features into 
a high-dimensional space using a kernel function and 
finds a hyperplane that minimizes prediction error 
within an �-insensitive loss function. Given a dataset 

xi, yið Þ
� �n

i¼1
; the optimization problem is formulated 

as:

min
w, b, n, n�

1
2
kwk2

þ C
Xn

i¼1
ni þ n�i
� �

(7) 

subject to:

yi − w, ; xið Þ
� �

− b � �þ ni (8) 

w, ; xið Þ
� �

þ b − yi � �þ n�i (9) 

ni, n�i � 0 (10) 

where C is a regularization parameter, ; xð Þ is a kernel 
function, and ni, n�i are slack variables.

Random Forest (RF)
RF is an ensemble learning method that constructs 
multiple decision trees during training and outputs 
the mean prediction of the individual trees. Each tree 
is trained on a bootstrap sample of the training data, 
and at each node, splits are made using a random 
subset of features. The prediction for an input x is 
given by:

ŷ ¼
1
T

XT

t¼1
ft xð Þ (11) 

where T is the total number of trees, and ft xð Þ is the 
prediction of the t-th tree. RF mitigates overfitting by 
averaging predictions and introducing feature 
randomness.

XGBoost
XGBoost is a scalable and efficient implementation of 
gradient-boosted decision trees (Chen & Guestrin, 

2016). It optimizes a regularized objective function 
that includes both the loss function and a penalty 
term for model complexity. The model is built in a 
sequential manner, where each new tree ft minimizes 
the following objective:

L ¼
Xn

i¼1
l yi, ŷi
� �

þ
XT

t¼1
X ftð Þ (12) 

where l yi, ŷi
� �

is the loss function, and X ftð Þ is a regu
larization term penalizing model complexity. XGBoost 
uses shrinking, efficient split finding, and column 
sampling to improve predictive performance.

Fully Connected Neural Network (FCNN)
FCNN is a type of artificial neural network (ANN) 
where each neuron in a layer is connected to every 
neuron in the subsequent layer. It consists of multiple 
layers: an input layer, one or more hidden layers, and 
an output layer. The network learns a mapping f :

Rd ! R through a series of nonlinear transforma
tions. Each neuron applies an activation function r to 
a weighted sum of inputs, yielding the following com
putation at each layer:

h lð Þ ¼ r W lð Þh l−1ð Þ
þ b lð Þ

� �
(13) 

where h lð Þ represents activations at layer l; W lð Þ and 
b lð Þ are the learnable weights and biases of the l-th 
layer, and r is a nonlinear activation function. The 
network is trained using backpropagation and gradi
ent descent, minimizing a loss function such as mean 
squared error for regression.

TabNet
TabNet is a state-of-the-art DL architecture specific
ally designed for tabular data (Arik & Pfister, 2021). 
Unlike traditional neural networks that transform all 
input features simultaneously, TabNet incorporates 
sequential attention mechanisms to dynamically select 
and process the most relevant features at each deci
sion step, making the model both interpretable and 
effective. The TabNet architecture consists of multiple 
steps, where each step i performs feature selection and 
processing as follows.

ŷi ¼
XN

j¼1
fj xð Þ � aij (14) 

where fj xð Þ represents feature transformations, and aij 
are attention weights that determine the importance 
of feature j at step i: The final prediction is the sum 
of outputs from all steps. TabNet applies sparse fea
ture selection and also includes a feature reuse 
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mechanism, allowing previously selected features to be 
revisited in later steps.

Neural Oblivious Decision Ensemble (NODE)
NODE is a differentiable deep-learning-based alterna
tive to decision trees, combining soft feature selection 
with ensemble learning (Popov et al., 2019). Instead of 
traditional hard splits in decision trees, NODE applies 
learnable split functions to determine the best decision 
boundary. It uses oblivious decision trees as its build
ing blocks, where all nodes at the same depth split on 
the same feature. This structure allows the model to 
be trained end-to-end using gradient descent while 
preserving the hierarchical feature interactions. The 
prediction for an input x is given by:

f xð Þ ¼
XT

t¼1
at � gt xð Þ (15) 

where T is the number of decision units, at are learn
able weights, and gt xð Þ represents soft decision func
tions or output of the t-th oblivious decision tree. 
NODE is particularly effective for tabular data, as it 
balances the interpretability of tree-based models with 
the flexibility and scalability of DL.

Optimization model for vehicle reidentification

Recall that 997 candidate ReId pairs were generated 
after processing the high-resolution event dataset with 
ground-truth video recordings. Let yij denote each 
such candidate pair, the validity of which has to be 
assessed via the proposed vehicle reidentification 
framework. To this end, we propose an optimization 
model that minimizes the error Eij associated with the 
pair of advance actuation i and stop bar actuation j. 
An ideal optimization model would yield as output 
580 yij pairs which tally with the ground-truth ReId 
pairs. The parameters, decision variables, objective 
function, and constraints of the optimization model 
are formulated as follows:

Parameters

Lij ¼
1, if candidate ReId pair i, jð Þ belongs to the same lane

0, otherwise

�

(16) 

Decision variables

yij ¼
1, if candidate ReId pair i, jð Þ is selected

0, otherwise

�

(17) 

Objective function

min Z ¼
X

i

X

j
yijEij (18) 

Constraints

tmin � tij � tmax 8ði, jÞ (19) 

Eij ¼ tij − tpred
i

�
�
�

�
�
� 8ði, jÞ (20) 

P
j yij � 1 8i (21) 

P
i yij � 1 8j (22) 

yij 2 f1, 0g 8ði, jÞ (23) 

Lij 2 f1, 0g 8ði, jÞ (24) 

yij ¼ Lij 8ði, jÞ (25) 

Equations (16) and (17) define the lane change par
ameter and decision variable associated with a candi
date ReId pair i and j. The objective function, defined 
per Equation (18), aims to minimize the total error, 
considering only the selected ReId pairs. Equation 
(19) ensures that the predicted pairs satisfy the search 
space constraints. Let tij be the actual travel time 
between pairs i and j, whereas tpred

i be the travel time 
predicted for i by the ML/DL model. Their absolute 
difference, as defined in Equation (20), yields the 
error Eij between pairs i and j. Equations (21) and 
(22) ensure that each advance actuation is associated 
with at most one stop bar actuation and vice-versa. 
Equations (23) and (24) define the binary nature of 
the decision variable yij and the lane change param
eter Lij: Equation (25) ensures that the predicted ReId 
pairs are on the same lane.

Model hyperparameter tuning and performance 
evaluation

The inferred and test datasets with 5,391 and 580 
respective ReId pairs were processed for feature extrac
tion. Each model was trained on the inferred dataset 
for travel time prediction using a 5-fold cross-validation 
to avoid reliance on a single train-validation split. 
Hyperparameter tuning was performed in conjunction 
with the cross-validation process to identify the optimal 
model configuration. The inferred dataset was divided 
into five folds, where four folds were used for training 
a model, while the remaining fold was held out for val
idation during each iteration. A grid search was 
employed to systematically evaluate different hyperpara
meter configurations predefined for a model. Thus, 
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during each fold of cross-validation, the model was 
trained for every hyperparameter combination on the 
training folds, with performance evaluated separately on 
the held-out or the validation fold. The performance of 
each hyperparameter combination was then averaged 
over all validation folds, and the combination with the 
best average validation score yielded the optimal model 
configuration. Finally, the model was retrained on the 
entire inferred dataset using these optimal hyperpara
meters. The final model was then used to make travel 
time predictions on the test set, which remained com
pletely unseen during hyperparameter tuning and 
model training. This overall procedure ensured that the 
model’s performance on unseen test data was not influ
enced by the hyperparameter tuning or model training 
processes, thereby providing an unbiased evaluation of 
the model’s predictive performance.

The travel time predicted by an ML/DL model is 
assessed using root mean squared error (RMSE), as 
represented in Equation (26). For performance evalu
ation of vehicle reidentification, let yground

ij represent 
the 580 ground-truth ReId pairs video-verified by 
research specialists, whereas ypred

ij represent the ReId 
pairs predicted by the optimization model. We first 
define the metrics true positive (TP), false positive 
(FP), and false negative (FN) as follows: TP is the 
number of common ReId pairs in ypred

ij and yground
ij ; FP 

is the number of ReId pairs in ypred
ij not present in 

yground
ij ; FN is the number of ReId pairs in yground

ij not 
present in ypred

ij : Based on these metrics, precision and 
recall are defined by Equations (27) and (28), respect
ively. Finally, Equation (29) defines the F1 score as a 
single number summary and the harmonic mean of 
precision and recall to conduct a cross-model com
parison of the six ML/DL models for reidentification.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 tij − tpred
i

� �2

n

v
u
u
t

(26) 

Precision ¼
TP

TPþ FP
(27) 

Recall ¼
TP

TPþ FN
(28) 

F1 ¼
2�Precision � Recall
Precisionþ Recall

: (29) 

Results and discussions

Reidentification performance across models

Table 3 summarizes the results for travel time predic
tion and vehicle reidentification across the six selected 

ML/DL models: SVR, RF, XGBoost, FCNN, TabNet, 
and NODE.

While the reidentification performance was com
parable across models, NODE yielded the best F1 
score of 0.9328, with 94.5% precision and 92.1% recall. 
Although some individual metrics, such as validation 
RMSE and FPs, were marginally better for other mod
els, NODE consistently performed well across all per
formance metrics, demonstrating the most balanced 
and robust performance overall. This balanced per
formance demonstrates NODE’s suitability for vehicle 
reidentification, where it is critical to minimize both 
FPs and FNs. Similarly, FCNN showed competitive 
performance, with an F1 score of 0.9309, making it a 
close alternative to NODE. These results reinforce the 
effectiveness and general robustness of ML/DL models 
in capturing the variability of travel time for vehicle 
reidentification.

Analysis of travel time prediction

Table 3 illustrates NODE’s superior performance for 
travel time prediction, with an average RMSE of 
0.8556 s on the validation folds and 0.9397 s on the 
test set. The differences between validation and test 
RMSE values across models provide insights into their 
generalization capabilities. While XGBoost achieved 
the lowest RMSE on the validation set (0.8495 s), its 
test RMSE increased to 0.9522 s, indicating a drop in 
generalization performance. Similarly, RF, TabNet, 
and FCNN performed well on the validation folds but 
suffered a large performance drop on the test set. In 
contrast, NODE exhibited a relatively small increase 
in RMSE from validation to test, reinforcing its ability 
to maintain consistent performance across different 
data distributions.

We further explore why NODE, compared to other 
models, yielded better results for travel time predic
tion and vehicle reidentification. Figure 5 illustrates 
the relationship between ground truth and predicted 
travel time across all models, with each observation 
representing a ground truth ReId pair. The green 
circles represent the predicted TP reidentifications, 

Table 3. Model results for vehicle reidentification.
Models RMSE[V] RMSE[T] TP FP FN Precision Recall F1 score

SVR 0.9633 1.0460 529 30 51 0.9463 0.9121 0.9289
RF 0.8674 0.9801 530 37 50 0.9347 0.9138 0.9241
XGBoost 0.8495 0.9522 532 32 48 0.9433 0.9172 0.9301
FCNN 0.8789 0.9901 532 31 48 0.9449 0.9172 0.9309
TabNet 0.8675 0.9814 529 31 51 0.9446 0.9121 0.9281
NODE 0.8556 0.9397 534 31 46 0.9451 0.9207 0.9328

RMSE[V] ¼ root mean squared error averaged over validation folds; 
RMSE[T] ¼ root mean squared error on the test set.

Bold indicates the best result obtained for each metric.
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while the red circles indicate FNs the model failed to 
reidentify. The correlation coefficient (r) indicates the 
strength of the linear association between the ground 
truth and predicted travel times.

NODE (r¼ 0.74) and XGBoost (r¼ 0.73) produced 
more consistent and reliable travel time estimates, 
which align with their lower RMSEs on the test set. 
The higher correlation and lower RMSEs in these 
models suggest that their errors are not only smaller 
in magnitude but also more uniformly distributed, 
evident from the tighter clustering of observations 
along the diagonal. Conversely, SVR exhibited the 
lowest correlation (r¼ 0.66) and highest RMSE on 
the test set due to greater dispersion of points along 
the diagonal, specifically at higher travel times. Figure 
5 further reveals that FNs (red points) are more dis
persed in lower-performing models–particularly in 
SVR, RF, and FCNN–contributing to their increased 
RMSE values. Overall, Figure 5 and Table 3 demon
strate NODE’s ability to more accurately predict travel 
time on the unseen test set, highlighting its robustness 
over comparable attention-based and ensemble-based 
learning models to capture the required variability in 
travel time for vehicle reidentification.

Optimal hyperparameters and computational time

Table 4 presents the grid of hyperparameters with the 
total combinations tested for each ML/DL model. 
Given its larger number of hyperparameters to tune, 
XGBoost had the highest number of hyperparameter 
combinations tested, followed by TabNet, which 
required fine-tuning both transformer and decision 
step parameters. The model-specific optimal hyper
parameter combinations yielding the best reidentifica
tion performance are in bold. For brevity, we discuss 
only the hyperparameters tuned for NODE, the best- 
performing model for vehicle reidentification.

Given the training dataset size and complexity, the 
optimal NODE model was configured with 16 trees, 
suggesting sufficient complexity to capture underlying 
patterns in travel time prediction while avoiding 
unnecessary redundancy in learned decision struc
tures. A tree depth of 2 indicates a simpler, more 
interpretable model that preserves generalization cap
ability without overfitting. For updating the model’s 
parameters during training, the learning rate of 0.1 
enabled stable yet efficient convergence and prevented 
slow optimization. Concurrently, a batch size of 32 
balanced computational efficiency and model stability, 

Figure 5. Comparison of ground-truth and predicted travel time across models.
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minimizing gradient noise without excessively 
smoothing updates to the model’s weights. Lastly, 
regularization using a dropout rate randomly deacti
vated 10% of neurons during each training step, pre
venting heavy reliance on specific neurons and 
resulting in more generalized feature representations.

Table 5 summarizes the computational performance 
of the proposed framework. After completing offline 
model training, the runtime for travel time prediction 
and subsequent reidentification was measured for 
each optimal model across three trials. Computational 
time for travel time prediction for the full test set 
(580 samples) ranged from 2.2 ms (XGBoost) to 
65.2 ms (FCNN), with NODE requiring just 3.9 ms 
while achieving the best reidentification performance. 
The reidentification step, executed for each actuation 
at the advance detector, required approximately 
14.4 ms consistently across all models. Model training 
time was not included in this analysis, since training 
typically occurs offline and varies substantially due to 

differences in hyperparameter search space–for 
instance, 3,888 combinations for XGBoost vs. 108 for 
NODE vs. 24 for SVR.

These findings–high reidentification accuracy and 
low computational cost–demonstrate that the pro
posed framework is robust and scalable for real-time 
processing and deployment, even at signalized inter
sections with high volume. Computational time 
assessments were performed using Python 3.10 on a 
high-performance workstation equipped with an 
AMD Ryzen 7 5800X CPU, 32 GB RAM, and dual 
NVIDIA RTX A4500 GPUs. However, the measured 
computation times for travel time prediction and 
vehicle reidentification tasks were consistently low 
(typically less than 20 ms per actuation), indicating 
that the framework’s operation is lightweight and not 
dependent on GPU acceleration. This suggests the 
proposed framework can be readily deployed on 
standard computing infrastructure without requiring 
specialized hardware.

Performance comparison with state-of-the-art 
analytical models

The NODE-based optimization framework, yielding 
the best reidentification performance with low compu
tational cost, was compared with three existing analyt
ical methods for reidentifying vehicles between 
detectors. Methods proposed by Lu et al. (2015), Chen 

Table 4. Model hyperparameters.
Model Hyperparameters Values Combinations

Support vector regression (SVR) kernel [“linear”, “rbf”] 24
C [0.1, 1, 10]
epsilon [0.01, 0.1, 0.2, 0.5]

Random forest (RF) n_estimators [50, 100, 200, 500] 144
max_depth [5, 10, 15, 20]
min_samples_split [2, 5, 10]
min_samples_leaf [1, 2, 4]

XGBoost (XGB) n_estimators [100, 200, 300] 3888
learning_rate [0.01, 0.1, 0.2]
max_depth [2, 3, 5, 7]
min_child_weight [3, 5, 7]
gamma [0, 0.1, 0.2, 0.5]
reg_alpha [0, 0.1, 0.5]
reg_lambda [0, 0.1, 0.5]

Fully connected neural network (FCNN) units [(64, 32), (128, 64), (64, 32, 16)] 27
dropout [0.1, 0.2, 0.3]
learning_rate [0.001, 0.01, 0.1]

TabNet n_d [8, 16, 24, 32] 864
n_a [8, 16, 24, 32]
n_steps [3, 5, 7]
gamma [1.0, 1.5, 2.0]
lambda_sparse [0.00001, 0.001, 0.1]
mask_type [“sparsemax”, “entmax”]

Neural Oblivious Decision Ensemble (NODE) num_trees [16, 32, 64] 108
tree_depth [2, 3, 5]
learning_rate [0.001, 0.01]
batch_size [32, 64]
Dropout [0.0, 0.1, 0.2]

Bold indicates optimal hyperparameter combination.

Table 5. Computational time across models.
Model Prediction (ms) Reidentification (ms)

SVR 28.4 14.3
RF 21.5 14.4
XGBoost 2.2 14.5
FCNN 65.2 14.5
TabNet 18.5 14.4
NODE 3.9 14.5

Each model’s computational time for prediction and reidentification is 
averaged over three runs.
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et al. (2017), and Pudasaini et al. (2024) were selected 
for performance comparison as these are among the 
most recent or prominent analytical methods for 
vehicle reidentification.

Pudasaini et al. (2024) relied on a priori knowledge 
of ideal travel times for stopping and running between 
detectors; sensitivity analysis carried out in the 
author’s study estimated these times as 6.6 and 4.6 s, 
respectively. In Lu et al. (2015) and Chen et al. 
(2017), velocity was computed at the detector loca
tions based on an a priori known effective vehicle 
length (assumed 25 ft in respective studies). Since an 
effective vehicle length was not calibrated a priori for 
the intersection approach in this study, we tested both 
methods by conducting a sensitivity analysis of vehicle 
lengths varying from 16 ft to 24 ft. Vehicle lengths of 
19 ft in Chen et al. (2017) and 20 ft in Lu et al. (2015) 
yielded the best reidentification performance. The rei
dentification results from these calibrated analytical 
methods and the best-performing NODE model from 
this study are summarized in Table 6. All reidentifica
tion methods were evaluated using the same test 
dataset comprising 580 ground-truth vehicle ReId 
samples, ensuring a consistent and fair performance 
comparison.

NODE’s F1 score of 0.9328, with 94.5% precision and 
92.1% recall, demonstrated superior performance over 
the existing analytical methods for vehicle reidentifica
tion. Note that the comparatively high precision from 
the calibrated analytical methods is attributed to fewer 
samples of TPs. Moreover, a significantly high number 
of FNs contributed to a low recall, indicating that the 
analytical methods miss a significant proportion of the 
actual ground-truth ReId pairs. We hypothesize that 
constraining the search space is one of the factors influ
encing recall in the analytical methods. Chen et al. 
(2017), for instance, constrains the search space conser
vatively for each actuation at the advance detector based 
on the minimum and maximum values of travel time 
between detectors. Similarly, Lu et al. (2015) utilize the 
velocity measurement at advance and entrance detectors 
but does not constrain the search space to reidentify 
actuation pairs. The NODE-based optimization frame
work, in contrast, applies a consistently constrained 

search space across all advance detector actuations, 
allowing for a more accurate reidentification while 
maintaining high precision.

Another critical limitation of the analytical methods 
is their dependence on a priori knowledge of key 
parameters, restricting their transferability across dif
ferent intersections. Lu et al. (2015) and Chen et al. 
(2017) rely on an assumed effective vehicle length, 
necessitating its manual calibration for each intersec
tion. An incorrect assumption of this parameter can 
heavily skew reidentification accuracy, as velocity esti
mation at detectors in these methods is directly influ
enced by vehicle length. Similarly, Pudasaini et al. 
(2024) depend on predefined ideal travel times for 
stopping and running vehicles, requiring site-specific 
calibration for reliable reidentification. In contrast, 
NODE’s ability to learn from data without requiring 
manual calibration of vehicle length or travel times 
makes the proposed ML-based optimization frame
work a more adaptable and scalable solution for 
vehicle reidentification across different intersection 
configurations.

Limitations and practical implications

While this study focused on reidentification at a single 
intersection approach, enhancing the scalability of the 
proposed framework across various intersection types 
and traffic conditions remains an important avenue 
for future research. Predicting travel time using 
advanced ML/DL models eliminates the need for site- 
specific calibration, suggesting that this framework is 
indeed transferable to different traffic environments, 
detector configurations, and signal control systems. 
However, additional validation using a large sample 
across multiple locations would strengthen its robust
ness under varying congestion levels, lane configura
tions, and vehicle mix. Furthermore, despite its high 
accuracy, the framework could face challenges in sce
narios with extreme congestion or frequent lane 
changes, where the assumption of minimal lane 
changes during the yellow onset may not hold. Future 
work could address these limitations and also explore 
the integration of additional data sources, such as 
GPS and vehicle-to-infrastructure (V2I) communica
tion, to further enhance reidentification accuracy, par
ticularly in complex traffic scenarios involving lane 
changes, queue spillback, and multimodal interactions.

Despite the aforementioned limitations, this study 
demonstrated the effectiveness of integrating an opti
mization framework with ML/DL-based travel time 
prediction for reidentifying vehicles at a signalized 

Table 6. Reidentification performance comparison with state- 
of-the-art analytical methods.
Reidentification methods TP FP FN Precision Recall F1 score

Lu et al. (2015)� 469 55 111 0.8950 0.8086 0.8496
Chen et al. (2017)� 431 45 149 0.9055 0.7431 0.8163
Pudasaini et al. (2024)� 513 40 67 0.9277 0.8845 0.9056
NODE-based framework 534 31 46 0.9451 0.9207 0.9328
�Analytical method calibrated for best reidentification.
Bold indicates the best result obtained for each metric.
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intersection using high-resolution event data. The 
NODE-based framework outperformed state-of-the-art 
analytical, conventional ML, and comparable DL 
models in accurately tracking vehicles over the 
advance and stop bar loop detectors that generate 
non-visual detection data. Unlike traditional analytical 
methods that rely on pre-calibrated parameters such 
as effective vehicle length or predefined travel time 
assumptions (Chen et al., 2017; Ding et al., 2016; Liu 
et al., 2017; Lu et al., 2015; Pudasaini et al., 2024; Ren 
et al., 2016; Wu et al., 2013), our framework adapts to 
varying traffic conditions without manual tuning, 
making it more scalable across different intersection 
and detector configurations. More importantly, the 
proposed framework’s low false alarm rate and high 
recall ensure minimal misclassification while maximiz
ing true reidentification pairs. These findings empha
size the importance of leveraging advanced learning 
models to replace conventional analytical methods 
that often struggle with adaptability and generalization 
for reidentifying vehicles.

Beyond the methodological advancements, this 
study offers practical contributions for both real-time 
and retrospective applications in assessing intersection 
safety and monitoring traffic operations. First, this 
study demonstrates that highly accurate vehicle rei
dentification can be achieved using high-resolution 
event data from widely deployed non-visual technolo
gies like loop detectors, without requiring video foot
age or site-specific calibration. This practicality 
enables transportation agencies to reliably track 
vehicles at an intersection approach using data they 
already collect. The framework supports real-time 
applications, including identifying vehicles at risk of 
entering during yellow or red phases and informing 
dynamic signal control strategies, such as extending 
green time to reduce the likelihood of red light run
ning or applying all-red extensions for late entries. 
Moreover, the framework facilitates large-scale retro
spective safety analysis by generating vehicle-level 
behavioral data that can be used to evaluate dilemma 
zone risks and assess safety countermeasures with 
greater accuracy. Given that vehicle actuations typic
ally occur every second on busy arterials, the pro
posed framework’s low computational cost offers 
sufficient processing speed and scalability for real- 
time deployment. More importantly, its seamless com
patibility with existing detector infrastructure and 
high-resolution data formats ensures practical, cost- 
effective integration into current ITS environments for 
live intersection monitoring and data-informed deci
sion support.

Conclusions

Most research on vehicle reidentification in the exist
ing literature focuses on traffic surveillance using 
images captured from multiple cameras with non- 
overlapping views. In contrast to such reidentification, 
this study addressed vehicle reidentification using 
non-visual detection data, focusing on obtaining 
driver behavior data by tracking vehicles at signalized 
intersection approaches. In the conventional layout of 
advance and stop bar detectors, vehicles approaching 
the intersection are detected at discrete locations but 
not reidentified over the approach area. Despite the 
uniformity in detector installation layout and the 
abundance of high-resolution event data across many 
transportation agencies, methodological advancements 
are limited in reidentifying vehicles at an intersection 
approach. Existing analytical attempts at reidentifying 
vehicles using such data relied on a priori calibrated 
parameters, limiting their applicability and transfer
ability to new intersections, detector configurations, 
and traffic dynamics. This study formulated a novel 
ML-based optimization framework for reidentifying 
vehicles between the advance and stop bar detectors 
using non-visual detection data.

The proposed framework comprised two major 
components: prediction of travel time between detec
tors and vehicle reidentification based on actuations 
over these detectors. The travel time prediction was 
tested with six advanced ML and DL models: SVR, RF, 
XGBoost, FCNN, TabNet, and NODE. A novel opti
mization model then utilized these predicted travel 
times for reidentifying vehicles approaching an inter
section. The reidentification framework was tested on a 
major intersection approach in Phoenix, Arizona. The 
NODE-based optimization framework yielded the best 
travel time prediction and vehicle reidentification 
results, with an F1 score of 0.9328, 94.5% precision, 
and 92.1% recall. The low false alarm and high recall 
rates of the proposed framework further demonstrated 
superiority over three calibrated analytical reidentifica
tion methods. The major contribution of this study is 
proposing a highly accurate and robust data-driven 
framework for vehicle reidentification using non-visual 
detection data, addressing a critical gap in the existing 
literature. Also, the study provides a scalable and auto
mated alternative to labor-intensive manual methods 
for collecting valuable driver behavior data, particularly 
during safety-critical yellow onset periods.

Our future work will focus on applying the proposed 
vehicle reidentification framework for analyzing 
dilemma zone boundaries and drivers’ acceleration/ 
deceleration behaviors while approaching an 
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intersection. While this study demonstrated the effect
iveness of integrating an optimization framework with 
ML/DL-based travel time prediction for non-visual 
vehicle reidentification, enhancing the framework’s scal
ability across various intersection types and traffic con
ditions remains an important avenue for future 
research. Despite its high accuracy, the framework could 
face challenges in scenarios with extreme congestion or 
frequent lane changes. Integrating additional data sour
ces, such as GPS and V2I communication, into the pro
posed framework could enhance the reidentification 
accuracy for real-time ITS applications, particularly in 
complex traffic scenarios involving lane changes, queue 
spillback, and multimodal interactions.
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